Our research is in the field of nonlinear waves, lyingÌýat the nexus of applied mathematics and physics. ÌýMathematically, the nonlinear waves that we investigate are solutions to nonlinear, dispersive partial differential equations. ÌýPhysically, this field has been driven by applications ranging from classical (geophysical fluid dynamics) to modern physics (nonlinear optics and quantum/condensed matter) in which wave speed depends upon the countervailing effects of wave amplitude and wavelength.Ìý In these physical environments, coherent structures such as solitons or solitary waves, periodic waves, andÌýÌýplay a decisive role in the dynamics of large amplitude excitations.Ìý The Dispersive Hydrodynamics Lab investigates the mathematics of coherent structures and their dynamics in nonlinear dispersive partial differential equations with particular application to fluid dynamics where we develop in-house experiments to test our mathematical predictions.Ìý Research also focuses upon nonlinear wave applicationsÌýin magnetic media where a variety of coherent spin wave, solitonic, and hydrodynamic-like structures are studied.Ìý Methods employed include mathematical modeling, analysis, asymptotics, Whitham modulation theory, numerical analysis, and in-house experiment. Whenever possible, comparisons with experiment are carried out.Ìý

The generation of DSWs represents a universal mechanism to resolve hydrodynamic singularities in dispersive media. Physical manifestations of DSWs include undular bores on shallow water and in the atmosphere (the Morning Glory), nonlinear diffraction patterns in optics, and matter waves in ultracold atoms. Any approximately conservative, nonlinear, hydrodynamic medium exhibiting weak dispersion can develop DSWs. The mathematical description of DSWs involves a synthesis of methods from hyperbolic quasi-linear systems, asymptotics, and soliton theory. This research is currently supported by the National Science Foundation throughÌý.Ìý

Ferromagnetic media provide a source of rich nonlinear, dispersive phenomena with practical import. Theoretical and technological developments have stimulated the field of nanomagnetism by the introduction of spin polarized currents as a means to excite magnetization dynamics at the nanometer scale in patterned environments. Strongly nonlinear magnetic solitons wereÌýrecently observedÌýin a nanomagnetic system. This solitary wave or "droplet" joins the domain wall and magnetic vortex as a fundamental and distinct object in nanomagnetism with similar potential for fruitful science. Marrying the Lab's research on fluid dynamicsÌýwith the field of magnetic materials, we have also been developing the dispersive hydrodynamic description of magnetic materials.

External Listings:ÌýÌý, ,Ìý

Manuscripts in Review

  1. Yifeng Mao and Mark A. Hoefer,ÌýExperimental investigations of linear and nonlinear periodic traveling waves in a viscous fluid conduit, .
  2. Mingyu Hu, Ezio Iacocca, and Mark Hoefer,ÌýThe spin piston problem for a ferromagnetic thin film, .

​Journal Publications

  1. Samuel J. Ryskamp, Mark A. Hoefer, and Gino Biondini,ÌýModulation theory for soliton resonance and Mach reflection, Proceedings of the Royal Society A,Ìýaccepted.Ìý ()
  2. Mingyu Hu, Ezio Iacocca, Mark A. Hoefer,ÌýSpin-injection-generated shock waves and solitons in a ferromagnetic thin film​, . ()
  3. Kiera van der Sande, Gennady A. El, and Mark A. Hoefer,ÌýDynamic soliton–mean flow interaction with non-convex flux, . (reprintÌý©Ìý)
  4. T. Congy, G. A. El, M. A. Hoefer, and M. Shearer,ÌýDispersive Riemann problem for the Benjamin-Bona-Mahony equation,Ìý. ()
  5. Samuel J. Ryskamp, Mark A. Hoefer, and Gino Biondini,ÌýOblique interactions between solitons and mean flows in the Kadomtsev-Petviashvili equation, . ()
  6. Adam L. Binswanger, Mark A. Hoefer, Boaz Ilan, and Patrick Sprenger,ÌýWhitham modulation theory for generalized Whitham equations and a general criterion for modulational instability, . ().
  7. Samuel Ryskamp, Michelle D. Maiden, Gino Biondini,Ìýand MarkÌýA. Hoefer,ÌýEvolution of truncated and bent gravity wave solitons:Ìýthe Mach expansion problem, . (reprintÌý©Ìý)
  8. Gino Biondini, Mark A. Hoefer, and A. Moro,ÌýIntegrability, exact reductions and special solutions of the KP-Whitham equations, . ()
  9. P. Sprenger and M. A. Hoefer,ÌýDiscontinuous shock solutions of the Whitham modulation equations as zero dispersion limits of traveling waves, . ()
  10. M. D. Maiden, N. A. Franco, E. G. Webb, G. A. El, and M. A. Hoefer, Solitary wave fission of a large disturbance in a viscous fluid conduit, Ìý().
  11. Ezio Iacocca and Mark A. Hoefer,ÌýPerspectives on spin hydrodynamics in ferromagnetic materials, .
  12. T. Congy, G. A. El, and M. A. Hoefer,ÌýInteraction of linear modulated waves with unsteady dispersive hydrodynamic states with application to shallow water waves, .Ìý()
  13. Richard O. Moore and Mark A. Hoefer,ÌýStochastic ejection of nanocontact droplet solitons via drift instability, . (reprint)
  14. Dalton V. Valentine, Michelle D. Maiden, and Mark A. Hoefer,ÌýControlling Dispersive Hydrodynamic Wavebreaking in a Viscous Fluid Conduit,Ìý. (reprint)
  15. Ezio Iacocca and Mark A. Hoefer,ÌýHydrodynamic description of long-distance spin transport through noncollinear magnetization states:Ìý the role of dispersion, nonlinearity, and damping,Ìý. (reprint)
  16. E. Iacocca, T-M. Liu, A. H. Reid, Z. Fu, S. Ruta, P. W. Granitzka, E. Jal, S. Bonetti, A. X. Gray, C. E. Graves, R. Kukreja, Z. Chen, D. J. Higley, T. Chase, L. Le Guyader, K. Hirsch, H. Ohldag, W. F. Schlotter, G. L. Dakovski, G. Coslovich, M. C. Hoffmann, S. Carron, A. Tsukamoto, M. Savoini, A. Kirilyuk, A. V. Kimel, Th. Rasing, J. Stöhr, R. F. L. Evans, T. Ostler, R. W. Chantrell, M. A. Hoefer, T. J. Silva, and H. A. Dürr,ÌýSpin-current-mediated rapid magnon localization and coalescence after ultrafast optical pumping of ferromagnetic alloys,Ìý. (open access) (news)
  17. Patrick Sprenger, Mark A. Hoefer, and Ezio Iacocca,ÌýMagnonic Band Structure Established by Chiral Spin-Density Waves in Thin Film Ferromagnets,Ìý. ()
  18. T. Congy, G. A. El, M. A. Hoefer, and M. Shearer,ÌýNonlinear Schrödinger equations and the universal description of dispersive shock wave structure,Ìý. ()
  19. Mark A. Hoefer, Noel F. Smyth, and Patrick Sprenger,ÌýModulation theory solution for nonlinearly resonant, fifth order Korteweg-de Vries non-classical traveling dispersive shock waves, .
  20. M. E. Mossman, M. A. Hoefer, K. Julien, P. Kevrekidis, P. Engels,ÌýDissipative shock waves generated by a quantum-mechanical piston, . (open access)
  21. M.ÌýD. Maiden, D.ÌýV. Anderson, N.ÌýA. Franco, G.ÌýA. El, and M.ÌýA. Hoefer, Solitonic Dispersive Hydrodynamics: Theory and Observation,Ìý. (reprint)
  22. M. Ruth, E. Iacocca, P. G. Kevrekidis, and M. A. Hoefer, Transverse instabilities of stripe domains in magnetic thin films with perpendicular magnetic anisotropy. . (reprint)
  23. P. Sprenger, M. A. Hoefer, and G. A. El,ÌýHydrodynamic Optical Soliton Tunneling,Ìý. (reprint)
  24. Denys Dutykh, Mark Hoefer, and Dimitrios Mitsotakis, Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations, .
  25. E. Iacocca, T. J. Silva, and M. A. Hoefer, Symmetry-broken dissipative exchange flows in thin-film ferromagnets with in-plane anisotropy, . (reprint)
  26. G. El, M. A. Hoefer, and M. Shearer,ÌýStationary expansion shocks for a regularized Boussinesq system, .Ìý(r) (1 of 4 )
  27. P. A. P. Janantha, P. Sprenger, M. A. Hoefer, and M. Wu,ÌýObservation of self-cavitating envelope dispersive shock waves in Yttrium Iron Garnet thin films, . (reprint) Ìý
  28. M. A. Hoefer, G. A. El, and A. M. Kamchatnov,ÌýOblique spatial dispersive shock waves in nonlinear Schrödinger flows, (reprint)
  29. E. Iacocca and M. A. Hoefer, Vortex-Antivortex proliferation from an obstacle in thin film ferromagnets, .Ìý(reprint)Ìý
  30. G. A. El, M. A. Hoefer, and M. Shearer,ÌýDispersive and diffusive-dispersive shock waves for non-convex conservation laws, . Ìý()
  31. E. Iacocca, T. J. Silva, and M. A. Hoefer,ÌýBreaking of Galilean invariance in the hydrodynamic formulation of ferromagnetic thin films, . (reprint, news)
  32. P. Sprenger and M. A. Hoefer,ÌýShock waves in dispersive hydrodynamics with non-convex dispersion, .Ìý(reprint, news)
  33. M. D. Maiden and M. A. Hoefer,ÌýModulations of viscous fluid conduit periodic waves, .Ìý(reprint, news)
  34. M. A. Hoefer and B. Ilan,ÌýOnset of transverse instabilities of confined dark solitons,Ìý.Ìý(reprint)
  35. M. D. Maiden, N. K. Lowman, D. V. Anderson, M. E. Schubert, and M. A. Hoefer,ÌýObservation of dispersive shock waves, solitons, and their interactions in viscous fluid conduits,Ìý. (reprint,Ìýmovies,Ìýnews)
  36. S. Chung, A. Eklund, E. Iacocca, S. M. Mohseni, S. R. Sani, L. Bookman, M. A. Hoefer, R. K. Dumas, and J.ÌýÃ…kerman,ÌýMagnetic droplet nucleation boundary in orthogonal spin-torque nano-oscillators,ÌýÌý(open access) (news)
  37. G. Biondini, G. A. El, M. A. Hoefer, and P. D. Miller,ÌýDispersive Hydrodynamics: ÌýPreface, . ÌýSpecial Issue on .
  38. G. A. El and M. A. Hoefer,ÌýDispersive shock waves and modulation theory,Ìý. ÌýReview article in Special Issue onÌý. ().
  39. G. A. El, M. A. Hoefer, and M. Shearer,ÌýExpansion shock waves in regularized shallow-water theory,Ìý.Ìý()
  40. P. Wills, E. Iacocca, and M. A. Hoefer,ÌýDeterministic drift instability and stochastic thermal perturbations of magnetic dissipative droplet solitons,Ìý. (reprint)
  41. L. D. Bookman and M. A. Hoefer,ÌýPerturbation theory for propagating magnetic droplet solitons,Ìý. (author postprint)
  42. N. K. Lowman, M. A. Hoefer, and G. A. El,ÌýInteractions of large amplitude solitary waves in viscous fluid conduits,Ìý. (reprintÌý©Ìý)
  43. M. D. Maiden, L. D. Bookman, and M. A. Hoefer,ÌýAttraction, merger, reflection, and annihilation in magnetic droplet soliton scattering,Ìý. (reprint)
  44. S. Chung, S. M. Mohseni, S. R. Sani, E. Iacocca, R. K. Dumas, T. N. Anh Nguyen, Ye. Pogoryelov, P. K. Muduli, A. Eklund, M. A. Hoefer, and J. Ã…kerman,ÌýSpin transfer torque generated magnetic droplet solitons (invited),Ìý. (reprint)
  45. M. A. Hoefer,ÌýShock waves in dispersive Eulerian fluids,Ìý. (reprint)
  46. E. Iacocca, R. K. Dumas, L. D. Bookman, M. S. Mohseni, S. Chung, M. A. Hoefer, and J. Ã…kerman,ÌýConfined dissipative droplet solitons in spin-valve nanowires with perpendicular magnetic anisotropy,Ìý. (reprint)
  47. L. D. Bookman, and M. A. Hoefer,ÌýAnalytical theory of modulated magnetic solitons,Ìý. (reprint)
  48. N. K. Lowman and M. A. Hoefer,ÌýDispersive hydrodynamics in viscous fluid conduits,Ìý. (reprint)
  49. N. K. Lowman and M. A. Hoefer,ÌýFermionic shock waves: Ìýdistinguishing dissipative versus dispersive regularizations,Ìý. (reprint)
  50. S. M. Mohseni, S. R. Sani, J. Persson,Ìý T. N. Anh Nguyen, S. Chung, Ye. Pogoryelov, P. K. Muduli, E.Ìý Iacocca, A. Eklund, R. K. Dumas, S.Ìý Bonetti, A. Deac, M. A. Hoefer, and J. Ã…kerman,ÌýSpin Torque–Generated Magnetic Droplet Solitons,Ìý. (reprint)
  51. N. K. Lowman and M. A. Hoefer,ÌýDispersive shock waves in viscously deformable media,Ìý. (reprintÌý©Ìý)
  52. M. A. Hoefer, M. Sommacal, and T. J. Silva,ÌýPropagation and control of nanoscale magnetic-droplet solitons,Ìý. (reprint)
  53. D. Yan, J. J. Chang, C. Hamner, M. Hoefer, P. G. Kevrekidis, P. Engels, V. Achilleos, D. J. Frantzeskakis, and J. Cuevas,ÌýBeating dark-dark solitons in Bose-Einstein condensates,Ìý.
  54. M. A. Hoefer and M. Sommacal,ÌýPropagating two-dimensional magnetic droplets,Ìý. ()
  55. M. A. Hoefer and B. Ilan,ÌýDark solitons, dispersive shock waves, and transverse instabilities,Ìý. (reprint)
  56. M. A. Hoefer, C. Hamner, J. J. Chang, and P. Engels,ÌýDark-dark solitons and modulational instability in miscible, two-component Bose-Einstein condensates,Ìý. (reprint)
  57. C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer,ÌýGeneration of dark-bright soliton trains in superfluid-superfluid counterflow,Ìý. (reprint)
  58. M. A. Hoefer and M. I. Weinstein,ÌýDefect modes and homogenization of periodic Schrödinger operators,Ìý. (reprint)
  59. A. Tovbis and M. A. Hoefer,ÌýSemiclassical dynamics of quasi-one-dimensional attractive Bose-Einstein condensates,Ìý. ()
  60. M. A. Hoefer, T. J. Silva, and M. W. Keller,ÌýTheory for a dissipative droplet soliton excited by a spin torque nanocontact,Ìý. (reprint)
  61. M. A. Hoefer and B. Ilan,ÌýTheory of two-dimensional oblique dispersive shock waves in supersonic flow of a superfluid,Ìý. (reprint)
  62. M. J. Ablowitz and M. A. Hoefer,ÌýDispersive shock waves,Ìý.
  63. M. J. Ablowitz, D. E. Baldwin, and M. A. Hoefer,ÌýSoliton generation and multiple phases in dispersive shock and rarefaction wave interaction,Ìý. (reprint)
  64. M. A. Hoefer, P. Engels, and J. J. Chang,ÌýMatter-wave interference in Bose-Einstein condensates: Ìýa dispersive hydrodynamic approach,. ()
  65. J. J. Chang, P. Engels, and M. A. Hoefer,ÌýFormation of dispersive shock waves by merging and splitting Bose-Einstein condensates,. (reprint)
  66. M. A. Hoefer, T. J. Silva, and M. D. Stiles,ÌýModel for a collimated spin-wave beam generated by a single-layer spin torque nanocontact,. (reprint)
  67. M. A. Hoefer, M. J. Ablowitz, and P. Engels,ÌýPiston dispersive shock wave problem,Ìý. (reprint)
  68. M. A. Hoefer and M. J. Ablowitz,ÌýInteractions of dispersive shock waves,Ìý. ()
  69. P. Engels, C. Atherton, and M. A. Hoefer,ÌýObservation of Faraday waves in a Bose-Einstein condensate,Ìý. (reprint)
  70. M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. Engels, and V. Schweikhard,ÌýDispersive and classical shock waves in Bose-Einstein condensates and gas dynamics,Ìý. (reprint)
  71. M. A. Hoefer, M. J. Ablowitz, B. Ilan, M. R. Pufall, and T. J. Silva,ÌýTheory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films,Ìý. (reprint)