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grable, area-preserving maps was devised by Suris.7 He stud-
ied maps of the second difference form,

xt1122xt1xt215eF~xt ,e!, ~6!

which can be thought of as an area-preserving map u
defining the variables (x,x8)5(xt21 ,xt). Under the assump
tions thatF and F are analytic and the invariant has th
form,

F~x,x8,e!5F~x8,x,e!5f0~x,x8!1ef1~x,x8!, ~7!

Suris showed there are exactly three possible families.
these cases the correspondingF is rational inx, in trigono-
metric functions ofx, or in exponentials ofx, respectively.
The three examples of the form~1! that we construct in Sec
II correspond to these three cases; however unlike Suris
have not shown that our solutions are exhaustive.

Other examples of integrable symplectic maps have a
been found. Suris’ techniques have been used to find hig
dimensional, integrable symplectic maps.8,9 Another tech-
nique that gives many examples is to find appropriate
cretizations of integrable differential equations; these can
treated with the methods obtained from inverse scatte
theory.10,11 Finally, maps with integrals have been co
structed as integration algorithms for differential equatio
with conserved quantities.12

In this paper we will study volume-preserving maps
R3. Such maps are useful in understanding the motion
passive tracers in fluids13 and magnetic field line
configurations.14,15They are also of interest since many ph
nomena in the two-dimensional case are not yet comple
understood in higher dimensions. Such phenomena inc
transport,16,17 the breakup of heteroclinic connections,18,19

and the existence of invariant tori.20,21 These maps are als
important as integrators for incompressible flows; in so
cases the maps are constructed to be volume-preserving22–25

and in others to preserve the conserved quantities of
flow.12

A prominent class of volume-preserving maps that ha
an invariant are trace maps.26 Physically, these are obtaine
from the Schro¨dinger equation with a quasiperiod
potential.27 Mathematically, they arise from substitution rule
on matrices.26,28,29 As an example, consider matricesA,B
PSL(2,R), the group of 232 matrices with unit determi-
nant. A substitution rule acts on a string of matrices a
corresponds to replacements of each occurrence ofA andB
with strings of these matrices. One of the most studied
amples is the Fibonacci substitution rule which correspo
to A°B and B°AB. The trace map is determined by th
action of this substitution on the traces of the matrices. D
fining x5 1

2 Tr(A), y5 1
2 Tr(B), and z5 1

2 Tr(AB), then the
substitution rule givesx85 1

2 Tr(B)5y, y85 1
2 Tr(AB)5z,

and z85 1
2 Tr(BAB)5 1

2 Tr(AB2)52x12yz, where we use
the Cayley–Hamilton theorem to simplify the last equatio
Thus we obtain the three-dimensional mapping,

f ~x,y,z!5~y,z,2x12yz!. ~8!
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This map has a form similar to~1! and is volume-preserving
but the change in sign in the last term means the ma
orientation-reversing. All trace maps that arise from inve
ible substitution rules have the function,

F~x,y,z!5x21y21z222xyz21, ~9!

as an invariant. Roberts calls this function the Fricke–Vo
invariant;28 it is an example of a group theoretic invaria
called a character. In this case,~9! arises from the trace of the
wor iTtion-7r0 9
0.34 096ic
(xyz)Tj
/F6t;2
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orbits and their bifurcations. The existence of the invari
implies that these orbits come in one parameter families
are transverse to the level setsMm , except at bifurcation
points. We will also show some numerical examples of
dynamics.

One reason for studying maps of the form~1! is that they
are volume-preserving for arbitraryF. Moreover, this form
also arises quite generally for the case of quadratic autom
t
at

e
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95 251 618.647 Tm
0F)Tj
/F8 1 Tf
10.874 0 0 9.876 171.4043618.647 Tm
0F
condition. In such cases,f0 is a polynomial of degree a
most two in each variable. Sincef0 is even and invarian
under cyclic permutation, we have

f0~x,y,z!5a0~x21y21z2!

1b0~x2y21y2z21z2x2!1c0 x2y2z2, ~23!

up to additive constants. From~20! it follows that

~f1~x,y,u!1f1~x,y,2u!!Fu0

522f0~x,y,u!x]Tj
/.985 0 01.99 63985 147.530 x
 616.564 Tm
(0eTj
/F17 1 Tf
9.978 0 0 9.978 142.



Fe~x,y,z!5Fe~y,z,2x12eF~y,z,e!!.

Then the symmetry ansatz,~15!, should be replaced by

Fe~x,y,z!5Fe~y,z,x!.
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so that the remaining multipliers satisfyl11l25t21.
These two multipliers correspond to the map restricted to
invariant surface when the orbit is not in the critical set ofF.
Thus if we consider the restricted map, the periodic orbi
elliptic if 21,t,3, hyperbolic with reflection ift,21,
and hyperbolic ift.3. If t521, the restricted map has
double multiplier at21, so that a period-doubling is ex
pected. In the caset53, l51 is a double eigenvalue and
e
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Solutions only exist whena,22 or a.18g22. When
a,22, ~34! represents one closed curve. Fora.18g22,
~34! corresponds to two closed curves lying on each side
y5x1z.

For the special cased50, we can relatively easily clas
sify the possible topologies of the setsMm . In this case there
is at most one critical orbit in each of the classes descri
above. We label the critical levels corresponding to the~Ci!
by m i . When they exist, the critical levels appear in the ord

m2<m35m4<m050

while m1 may vary in the ordering.
Whena,22 there are two period six orbits. The firs

~C2!, is born atm2 which has an expression—arising fro
the discriminant of~33!—that is too long to display. The
second period six orbit~C3! is born at

m352
~21a!2

4g
.

The critical circle~C4! exists whenb522g anda,22. In
this casem45m35m2 , and the orbits~C2! and~C3! become
part of the critical curve. Finally the period two critical orb
arises only when (12a)/(g2b),0 at the level

m15
3~a21!2

4~b2g!
.

In the special casea51,g5b
f

d

r
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Even though the fixed point at the origin is critical, it alwa
has one unit multiplier since it lies on the curve of fixe
points. It is elliptic when23,a,1.

Period two points have the form (x,y,x)→(y
Downloaded 24 Jun 2002 to 128.138.249.124. Redistribution subject to A
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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n.
~C1! m152(a21)2/4g, corresponding to the critical perio
two orbit.
~C0! m050 corresponding to the critical point at the origi

The fixed points lie on the line (x,x,x). If a,23 there
are no fixed points onMm until
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The right panel shows the dynamics form51.0. Here one
can see a prominent island~purple! enclosing one of the
elliptic fixed points. Again the invariant surface is divide
into two large chaotic domains. Form.1.1 the large invari-
ant circles have been destroyed, and the two chaotic zo
are joined. There are prominent elliptic regions until after
fixed point orbit period doubles@from ~39!, m53.75]. For
larger m the dynamics appears nearly uniformly chaot
however, amongst the chaotic orbits are the islands surro
ing the two elliptic period three orbits. These become m
visible for largem.

The orbits for the case corresponding to Fig. 4 are sho
in Fig. 7. When1

4,m,0, the orbits that lie on the pair o
spheres enclosing the critical period two orbit are predo
nantly regular, as can be seen in the left panel. Asm ap-
proaches 0, the chaotic regions grow, and they dominate
critical surface,m50, as seen in the middle panel. There a
also large islands surrounding the elliptic period two orbits
this level. Nearm50.42 a family of invariant circles appear
that divides the chaotic region into two parts, as can be s
in the right panel. These circles are destroyed bym51.8, and
as before, apart from the elliptic period three orbits, the
namics is largely chaotic asm becomes large and the invar
ant surface acquires its hourglass shape.

As a final example, we consider the parameters co
sponding to Fig. 5. For this case, orbits on compact com
nents of six level sets are shown in Fig. 8. In the top-l
panel,m,21, and the orbits lie on a family of six sphere
enclosing the~C2! orbit. In the next panel, these spher
have joined at the~C3! orbit, and the dynamics appears un
formly chaotic. In the top-right panel,m50, the torus
pinches at the origin. The red and black orbits encircle
elliptic fixed points. Also shown are green and yellow orb
es
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that are associated with two elliptic period five orbits. F
larger m, as shown across the bottom row in Fig. 8, t
islands around the elliptic fixed points remain promine
Also visible are two elliptic period four orbits~light blue and
green! in the bottom-middle panel atm55. Apart from these
islands, which persist on the unbounded components fom
.18.75, the dynamics on these sets appears to be lar
unbounded.

IV. CONCLUSIONS

We have used the methods of Suris to find several fa
lies of volume preserving maps onR3 that have an invariant
Unlike Suris, our solutions do not appear to be exhaustive
would be interesting to obtain such a classification. We h
not found any polynomial maps that have an invariant
yond the trace maps,~8!–~10!. It may be that there are no
polynomial, volume-preserving maps which have an inva
ant that satisfies the conditions~15!–~16!; our results show
this is true whenF is a homogeneous quadratic function.

Both topologically and dynamically our maps are rich
than the well-known trace maps. We do not know if there
a set of parameter values for which our maps are ‘‘co
pletely chaotic’’ on an invariant surface; this was one of t
prominent features of trace maps, which are semiconjug
to an Anosov system on the tetrahedral critical level set
the Fricke–Vogt invariant.

In the future it would be interesting to investigate th
dynamics of these maps composed with a small perturba
that destroys the invariance ofF. Is the transport between
level sets more efficient when the dynamics on the surfac
chaotic?



FIG. 8. ~Color! Orbits of~1!
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