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Networks that learn the precise timing of event sequences
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Abstract Neuronal circuits can learn and replay firing pat-
terns evoked by sequences of sensory stimuli. After training,
a brief cue can trigger a spatiotemporal pattern of neu-
ral activity similar to that evoked by a learned stimulus
sequence. Network models show that such sequence learn-
ing can occur through the shaping of feedforward excita-
tory connectivity via long term plasticity. Previous models
describe how event order can be learned, but they typi-
cally do not explain how precise timing can be recalled.
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2012). Importantly, the temporal patterns of the stimulus-
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Table 1 Variables and
parameters with their default
values

Symbol Description

Variables

Ij External stimulus for excitatory population j

uj Non-dimensional firing rate of excitatory population j (maximum uj = 1)

v Non-dimensional firing rate of global inhibitory population (maximum v = 1)

pj Level of facilitation of synapses from population j (baseline pj = 1)

wjk, w Strength of excitation from population k to excitatory population j

Tj , T Duration of stimulus

Time parameters (default values in parenthesis)

τ Timescale of neuronal firing (10 ms6)

τf Timescale of short term facilitation (1 s4)

τw Timescale of learning rule (150 s1)

τa Time scale of adaptation (400 ms5)

τs Time scale of synaptic inputs from other populations (50 ms6)

Tcue Duration of stimulus to trigger replay (50 ms2,3)

D Delay in presynaptic firing affecting connections between populations (30 ms 1)

D′ Delay in presynaptic firing affecting connections within populations (20 ms 1)

Other parameters (default values in parenthesis)

ϕ Firing rate response function (Heaviside step function)

θ Threshold for activation of excitatory population (0.5)

θv Threshold for activation of inhibitory population (0.5)

pmax Maximum level of short term facilitation (2)

Zk Strength of excitation from population k to inhibitory population (0.3)

L Weight of global inhibition (0.6)

b Strength of adaptation (1)

M Learning rule threshold (1)

wmax Maximum synaptic weight between populations (0.4852)

w′
max Maximum synaptic weight within populations (4.1312)

wmin Minimum synaptic weight within populations (1.3488)

γd
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assumption simplified the analysis, but was not necessary
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2.5 Matching training parameters to reactivation
parameters

To guarantee that long term plasticity leads to a proper
encoding of event times, it is necessary that the learned
weight, w∞

21 given by Eq. (6), matches the desired weight
W(T ) given by Eq. (9). This can be achieved by equating
the right hand sides of Eqs. (6) and (9), so that

(1
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(Kempter et al. 1999; Pfister and Gerstner 2006; Clopath
et al. 2010).

To demonstrate how the timing of events can be encoded
in the network architecture, we start with two populations
(Fig. 2). During training, population 1 was stimulated for T1

seconds followed by stimulation of population 2 (Fig. 2a).
The stimulus was strong enough to dominate the dynam-
ics of the population responses (Section 2). While the first
stimulus was present, population 1 was active and LTD
dominated, decreasing the synaptic weight, w21, from popu-
lation 1 to population 2. After T1 seconds, the first stimulus
ended, and the second population was activated. However,
population 1 did not become inactive instantaneously, and
for some time both population 1 and 2 were active. During
this overlap window, LTP dominated leading to an increase
in synaptic weight w21. Shortly after population 1 became
inactive, changes in the weight w21 ceased, as plasticity only
occurs when the presynaptic population is active. The ini-
tial and final synaptic weights (w0

21 and w1
21, respectively)

can be computed in closed form (Section 2). Repeated
presentations of the training sequence lead to exponen-
tial convergence of the synaptic weights, wi

21 (weight after
ith training trial), to a fixed value (Fig. 2b). On the other
hand, the synaptic weight w12 is weakened during each
trial because the presynaptic population 2 is always active
after the postsynaptic population 1 (Section 2). In the
case of N populations, each weight wk+1,k will converge
to a nonzero value associated with Tk , whereas all other
weights will become negligible during replay. Thus, the
network’s structure eventually encodes the order of the
sequence.

The duration of activation in population 1, T1, determines
the equilibrium value of the synaptic weight from popula-
tion 1 to population 2, w∞

21 (Section 2). For larger values
of T1, LTD lasts longer, weakening w21 (Fig.
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proposed as mechanisms for time-keeping (Buonomano
2000; Durstewitz 2003; Reutimann et al. 2004; Karmarkar
and Buonomano 2007; Gavornik et al. 2009). Without such
a slow process, cued activity would result in a sequence
replayed in the proper order, but information about event
timing would be lost.

For simplicity we focus on two populations, where activ-
ity of the first population represents a timed event (Fig. 3).
To simplify the analysis, we also assumed that synaptic
weights are fixed during replay. This assumption is not
essential (Section 4.4). After population 1 is activated with
a brief cue, it remains active due to recurrent excitation
(Section 2
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(using 20,000 initial w0’s). The synaptic weight after the
ith training, wi

21, is described by a probability density func-
tion that converges in the limit of many training trials.
The peak (mode) of this distribution is the most likely value
of the learned synaptic weight after repeated presentation of
the sequence (Fig. 5c). The variance of the learned synap-
tic weight, w∞

21,
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a neural population, can play the role of a slow, time track-
ing process (Benda and Herz 2003), instead of short term
facilitation. In contrast to the case of short term facilitation,
adaptation causes the effective input from one population to
decrease over time.

In this case population activity was modeled by

τ
duj

dt
= −uj + ϕ(wjj uj + sj − θ − Lv − aj ),

τa

daj

dt
= −aj + buj ,

τs

dsj

dt
= −sj +

N∑

k �=j

wjkuk,

τ
dv

dt
= −v + ϕ

(
N∑

k=1

Zkuk − θv

)

,

where aj denotes the adaptation level of population j , τa is
the time scale of adaptation, and b is the adaptation strength.
Feedback between populations was assumed to be slower
than feedback within a population; thus, the total input
for population j was split into self-excitation (wjj uj ), and
synaptic inputs from other populations (sj ) which evolved
on the time scale τs . Note that in the limit τs → 0, synapses
are instantaneous.

For a suitable choice of parameters, global inhibition
tracks activity faster than excitation between populations.
Then, when a population becomes inactive due to adap-
tation, the level of global inhibition decreases, allowing
subsequent populations to become active. This means the
weight of self excitation can encode timing. Thus, in this
setup we modeled long term plasticity within a population
as well. The learning rule for wjj was analogous to wjk with
the additional assumption that since wjj represented the
synaptic weight within a population, it could not decrease
below a certain value wmin. Also, the parameters for long
term plasticity within a population are allowed to be dif-
ferent from the parameters for long term plasticity between
populations.

The learning rule was then

τw

dwjj

dt
= −γ ′

d(wjj − wmin)uj (t − D′)(1 − uj (t))

−γ ′
p(wjj − w′

max)uj (t − D′)uj (t).

When the population was activated (u1(t) ≈ 1) for
t ∈ [0, T1] (Fig. 7a), the changes in the weight w11 were
governed by the piecewise differential equation

dw11

dt
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, t �∈ [D′, T1 + D′]
γ ′

p

τw

(w′
max − w11) t ∈ [D′, T1]

− γ ′
d

τw

(w11 − wmin) t ∈ [T1, T1 + D′].

The following equation relates the synaptic weight at the
end of a presentation, w11(Ttot ), to the synaptic weight at
the beginning of the presentation, w11(0):

w11(Ttot ) = w11(0)e−T1γ ′
p/τw e(γ ′

p−γ ′
d )D′/τw

+w′
maxe−D′γ ′

d /τw
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This learning process is distinct from the approach outlined
in (Buonomano and Maass 2009; Hennequin et al. 2014),
since it solely trains the recurrent architecture between pop-
ulations encoding time; tuning of a downstream readout is
unnecessary.

5.4 Internal tuning of long term plasticity parameters

There is a large set of parameters for which the network can
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to occur. This assumes there is some external signal indi-
cating how accurately the sequence is being replayed. For
instance, human performance of a piece of music relies on
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Sjöström, P.J., Turrigiano, G.G., & Nelson, S.B. (2001). Rate, timing,
and cooperativity jointly determine cortical synaptic plasticity.
Neuron, 32(6), 1149–1164.
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