Transport through chaos

This content has been downloaded from IOPscience. Please scroll down to see the full text. 1991 Nonlinearity 4 583 (http://iopscience.iop.org/0951-7715/4/2/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.138.73.68 This content was downloaded on 05/12/2014 at 21:34

Please note that terms and conditions apply.

Nonlinearity 4 (1991) 583-590. Printed in the UK

Transport through chaos

3	

2	
.	
ι.	
_	
<	

584 R W Easton

determine how ensembles of points are transported. The action principle of MacKay, Meiss and Percival [4] can be used to compute areas of pieces of the grid. Thus knowledge of trellis geometry together with area computations will form the

<u> </u>						
	•					
1						
)_h						
1						
[
	<u>کر</u>	1. r				
	· · ·					
	· · · · ·	,				
12 x						
	•					
						<u> </u>
•						
						
1						
1						
11						
Ĵ						
1						
L						
<u> </u>			· · · · · · ·	• 1		
					- 1.5	-
t 3						

	Lamma 7.1 Suppo	so that the autric	<u>er is a pieso</u>	of the stable m	anifold of some	
<u> </u>						
[
;						
1 						
u.						
1						
	-					
						4
<u>,</u> *						
,						
· • • •						
5.						
1 I						
I						
¢						

R W Easton

Rearranging the sum gives

$$\int_D \mathrm{d}p \wedge \mathrm{d}q = \sum_{j=-\infty}^{\infty} \alpha^j [F(b_j) - F(a_j)].$$

In general suppose that D is a disc bounded by alternating segments of stable and unstable manifold. Suppose that the endpoints of these segments are indexed a^0, a^1, \ldots, a^{2m} (with $a^{2m} = a_0$) in a counterclockwise order around the boundary of D. Suppose that the segment joining a^0 and a^1 is contained in a stable manifold. Then by the preceding argument

$$\int_{D} \mathrm{d}p \wedge \mathrm{d}q = \sum_{j=-\infty}^{\infty} \alpha^{j} \sum_{k=0}^{m-1} \left[F(a_{j}^{2k+1}) - F(a_{j}^{2k}) \right].$$
(2.4)

This formule supropers the MacKay Maise Descivel estion principle

 _

Transport through chaos

	A		 <u> </u>	1 1 1 1 4-	
					6
A					
					,
19					
2 1 1 1 1 1 1 1 1 1 1 1 1 1					
					L.
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	· · ·				
					_
			-		
i Jax		-			
_					

588 R W Easton

Proposition. Discontinuity points of t^+ occur on *R*-stable manifolds. Similarly, discontinuity points of t^- occur on *R*-unstable manifolds. Hence the internal trellis of the resonance zone partitions the zone into its exit time decomposition.

	Proof For simplicity the proof will be given for the resonance zone pictured in	
E-1		
);==		
<u>/</u>		
5		
JK	· · · · · · · · · · · · · · · · · · ·	
1		
_		
lin.		
<u>.</u>		
(=		
-		

	• •		
			:
_{			
-			
<u>k</u>			
<u> </u>			
			j.
			.
♪ <u></u>			
t.			
1			
	-		
	~		

- [3] Easton R 1986 Trellises formed by stable and unstable manifolds in the plane Trans. Am. Math. Soc. 294 719-31
- [4] MacKay R, Meiss J and Percival I 1984 Transport in Hamiltonian systems Physica 13D 55-81
- [5] Poincaré H 1892 Methodes Nouvelles de la Mechanique Celeste (Paris: Gauthier-Villars) ch 33
- [6] Wiggins S 1990 On the geometry of transport in phase space, 1. Transport in k-degree-of-freedom Hamiltonian systems *Physica* 44D 471-501
- [7] Rom-Kedar V 1990 Transport rates of a class of two-dimensional maps and flows Physica 43D 229-68
- [8] Easton R 1989 Isolating blocks and epsilon chains for maps Physica 39D 95-110