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In the simplest version of the Markov model 
we assume that each state in the Markov chain 
corresponds to the (p,q)  resonance associated 
with a pair of rotational periodic orbits of fre- 
quency p / q ;  the boundaries of the state are 
either the stable and unstable manifolds forming 
the resonance boundary or the minimum flux 
cantorus between two neighboring resonances. 
In this case only nearest neighbor states are 
connected, and Pij is a n d  r e s o n a n c e  reson9tates 
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computed with no loss of accuracy [14]. Every 
orbit in a discrete mapping is necessarily period- 
ic. Rannou has shown that the average period is 
¢7(L) for a random permutation (with the 
symmetries of the standard map), and numerical 
computations for the standard map on lattices 
with L-< 800 confirmed this dependence. How- 
ever, Percival and Vivaldi no ted  that the dis- 
tribution of orbit periods will vary depending 
upon number theoretic properties of L [15,16]. 
For example choosing L to be a highly com- 
posite number such as the ever popular 2" is 
expected to give anomalous results. We will 
compare several different L in our computa- 
tions. 

If one naively iterates using floating point 
arithmetic, as we do for the most part, it is 
important to note at least one result from above: 
the effective number of lattice points is 
6(precision-2), and if one iterates the map 
longer than ~?(precision -1) a typical orbit would 
be periodic. This has observable effects, for 
example in single precision calculations of the 
diffusion coefficient. We use IEEE double preci- 
sion arithmetic, and therefore require t < 1016 - a 
limit that is well beyond our computational 
resources. 

Sometimes one can appeal to shadowing to 
evade the criticism of the loss of accuracy due to 
chaotic instability, i.e. even if one is not iterating 
a true orbit of the map, shadowing would imply 
there is a true orbit nearby [17,18]. However, we 
believe that the very phenomena that make our 
system interesting- long time correlations near 
the boundaries of chaotic zones-invalidates 
circles For 
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Fig.  3.  T h e  ce l l s  f r o m  Fig, 2 that  h a v e  p > 1.17.  

the choice of initial condition (see discussion 
below). 

If the density distribution were obtained from 
a random process (randomly put t balls in A cN 2 
urns) then the distribution of the expected num- 
ber of cells with a given occupation number 
would be binominal. In the limit of large time 
this would become the Gaussian about p = I with 
the variance 
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Fig. 5. C o m p a r i s o n  o f  G a u s s i a n  wi th  c o m p u t a t i o n s  for  t = 
107. S h o w n  are  data  for  k = 10, N = 100 a n d  k = kc, ,  N = 500.  

t r  2 = ( A c N  2 - 1 ) / t .  (8) 

Indeed, computations at large values of k (e.g. 
k = 10, see Fig. 5) where the entire phase space 
appears chaotic, give results for the density 
distribution virtually indistinguishable from the 
Gaussian. As Figs. 5 and 6 show, the agreement 
is not as good for k = kcr. In the first place, the 
mode of the Gaussian is 1.00, while the numeri- 
cal results give a larger value. This is due to the 
20% of the cells that are cut by the boundary of 
the irregular component. In Fig. 6 we shift the 
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Fig. 6. Comparison of computations with Gaussian for t = 
2.5 × 10 s, k = kcr, N =  500.  T h e  sol id c u r v e  is a G a u s s i a n  
artif icial ly c e n t e r e d  at p = 1.14,  but  wi th  v a r i a n c e  g i v e n  by  

(8). 
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mode of the Gaussian, to show that its variance 
agrees well with the numerical distribution. For 
other times the numerical or also agrees with the 
Gaussian; for example, from the data at t = 10 9 

we compute o" = 0.01---0.003 in precise agree- 
ment  with (8). The low density shoulder on the 
numerical distribution is quite visible in Fig. 6; it 
is absorbed into the main peak for t > 10 9. Our 
conclusion is that for t > 10 9 the computations 
are consistent with ergodicity on the irregular 
c o m p o n e n t -  with the exception of the ½% of 
high density cells. We discuss this in the next 
section. 

Before leaving this section, we pause to con- 
sider how our results depend upon the choice of 
initial condition and the use of floating point 
arithmetic. We will find that the transient fea- 
tures of the density distribution do vary, how- 
ever, by t =  10  9 most of these transients are 
gone. 

In the previous computations, we used an 
initial condition as close as possible to 
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Fig. 7. Compar i son  of density distr ibutions for k = k , ,  N = 
500 and t = l0 s. The  solid line is a double precision calcula- 
tion for the initial condit ion ( - 0 . 5 +  10-12,0.0).  Integer  
calculations for the initial condit ion (i,j) = (0,1) with various 
pr ime lattices are shown with the  symbols  noted.  The  two 
values of  L > 23o= 1073741824 give almost  identical results 
to the  double precision calculation. However  a double 
precision calculation for (0.5,0.0) (dot ted)  and ones  using 
prime L < 2 3 ° ,  as well as for L = 2 3 °  show low density,  
t ransient  features.  

some sensitivity to the integer L. For our compu- 
tations changing L caused variations in the result 
that were similar to changing the initial condition 
in the floating point calculation; indeed, since we 
fixed ] = 1 we were in fact changing the initial 
condition as we varied L. We were unable to 
determine if the bijective nature of the integer 
map made it superior to the floating point map in 
any way. 

One issue of interest is the possible depen- 
dence of the results on whether L is composite 
or prime [15]. We compared the computation for 
L = 2  30 with several nearby prime numbers. 
Interestingly, for those prime L > 2 30 that we 
checked, the integer calculations are nearly 
Gaussian just like the solid curve in Fig. 7. 
However for L = 2 30 or a prime slightly smaller 
than this, the calculations differed significantly- 
often exhibiting a low density peak showing that 
some region of phase space was under-occupied. 
Some examples are displayed in Fig. 7. 

In all cases, however, these differences appear 
to be transient. The probability distribution 
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S1 and S01 is zero. Then,  providing only that 

Ps--,sl > Pso-.sol ,  (which is satisfied by the model 
(11) if e 0 < 1) one iteration of (3) leads to Pso > 

p~ This occurs because it is more likely for 
particles in state S than those in SO to move into 
the branches of the tree,  thus the density in S 
decreases more.  

Of  course, even though the occupation num- 
ber is transiently not monotone,  it asymptotically 
relaxes to the constant density equilibrium, as is 
also consistent of our computations for the 
standard map. 

It would be difficult to provide a more quan- 
titative comparison of the Markov tree model 
with the standard map. This would require 
choosing the appropriate states for the map and 
constructing an algorithm that would decide 
which of state contains the phase point z, .  For 
the "short  t ime" dynamics of t ~< 101°, the effec- 
tive structure of the tree will not be close to the 
self-similar assumption, since as we have seen 
the phase point does not actually get too deeply 
into the tree structure (four or fewer levels as we 
saw for the Markov chain). 

5. Conclusions 

We have seen that a chaotic orbit on an 
irregular component  appears  to be numerically 
ergodic. The measure defined by such an orbit 
limits to the constant, a rea  measure but exhibits 
several anomalies along the way. Most conspicu- 
ous are the density spikes (up to a factor of 100) 
that occur around small elliptic islands embed- 
ded in the irregular component .  Though these 
spikes are transient, they might as well, for all 
practical purposes,  be eternal: even after 101° 
iterates a small fraction of the phase space has 
density up to three times the mean. Since in 
most cases 101° might as well be eternity, it 
would be bet ter  to use a nonuniform transient 
measure in applications, as opposed to the con- 
stant invariant measure. 

The density spikes are inconsistent with a 
nearest  neighbor Markov model of transport.  

For  this model,  if the density begins as a mono- 
tone function of distance from a bounding in- 
variant circle, it must remain monotone.  How- 
ever, a Markov tree model can account for 
nonmonotonici ty of the density. Metaphorically, 

this occurs because the density on a large branch 
of the tree can more easily disperse into small 
branches than can density on the small branches 
disperse into the twigs. 

Finally we mention another  possible explana- 
tion for the density spikes - the presence of local 
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