## SYMPLECTIC MAPS

$$= p \wedge q. \tag{1}$$

$$(q_i, p_i), i = 1, \ldots, n, r$$

$$f = q' p' + p q, r = r'$$

$$q' = q + t \frac{H}{p'}(q, p'), \quad p' = p - t \frac{H}{q}(q, p').$$
 (4)

H = K(p) + V(q)

## **The Symplectic Group**

 $\{...Z_t, Z_{t+1}, ...\}$  $Z_{t+1} = f(z_t) \qquad \qquad \begin{cases} \dots Z_t, Z_{t+1}, \dots \end{cases}$   $f \qquad \qquad , M = \prod_t Df(z_t).$   $f \qquad \qquad , M \qquad \qquad (2), M^t J M = J.$   $2n \times 2n \qquad \qquad (2n+1).$  $(M) = 1, M_{-1}, M_{-1}, \dots, M_{-n}$ (ivi) = 1, ivi
hyperbolic,
hyperbolic with reflection,

- elliptic, =  $^{2}$
- . Krein quartet

| $m \cdot (0) \neq n$ , $m \cdot n$ .                                                                            |
|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                 |
|                                                                                                                 |
| C-, D (0), ,                                                                                                    |
| , D (0), (. n                                                                                                   |
| (1),                                                                                                            |
|                                                                                                                 |
| · · · · · · · · · · · · · · · · · · ·                                                                           |
| 1 🗢                                                                                                             |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
| • · · · · · · • • · · · · · · · · · · ·                                                                         |
| beyond all orders.                                                                                              |
|                                                                                                                 |
| $n=1$ . $\mathbb{S} \times \mathbb{R}$                                                                          |
| $\mathbb{S} \times \mathbb{R}  ($                                                                               |
|                                                                                                                 |
| Lipschitz graph, $p = P(q)$ ,                                                                                   |
| in the second of the second |
|                                                                                                                 |
| cantorus                                                                                                        |
| cantorus                                                                                                        |
| ( cantorus                                                                                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                           |
| · · · · · · · · · · · · · · · · · · ·                                                                           |
|                                                                                                                 |

(a, b, c) ( , , , 1 , ).

S

See also Aubry-Mather theory; Cat map; Chaotic dynamics; Constants of motion and conservation laws; Ergodic theory; Fermi acceleration and Fermi map; Hamiltonian systems; Hénon map; Horseshoes and hyperbolicity in dynamical systems; Lyapunov exponents; Maps; Measures; Melnikov method; Phase space; Standard map

## **Further Reading**

- Mechanics, Mathematical Methods of Classical
- Framework (The Physics and Technology of Particle and Photon Beams),
- Techniques,

## **Manuscript Queries**

Title: Encyclopedia of Non-linear Sciences Alphabet S: Symplectic maps

| Page     | Query<br>Number | Query |  |
|----------|-----------------|-------|--|
| No Query |                 |       |  |