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tions of the bunch in the wave. 
Related self-consistent problems include 

the interaction of a single particle with many 
waves [ 81 and the interaction of one wave with 
many other waves [ 9 1. The more complicated 
problem is the fully self-consistent interaction 
of many particles with many waves [lo], i.e. 
wave-particle turbulence, and it is not clear if 
the analysis of this paper can give any insight 
into this case. 

In Section 2 we review the derivation of the 
OWM model, obtaining the Hamiltonian formu- 

oo], the 
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in the wave can 



J.L. Tennyson et al. 



6 J.L. Tennyson et al. I Self-consistent chaos in the beam-plasma instability 

into the following energy expression: 

This results in 

ffLf&Xj,Pjl 

= & p2fpd-h- ; J J fpv’ph 

- eVp(Xj) - $VbCXj) 
> 

, (18) 

where v)r (Xj ) and Q)b (Xj ) are the contributions 
to the electrostatic potential of the plasma and 
beam charge, respectively. The Hamiltonian of 
Eq. ( 18) together with the bracket of Eq. ( 14) 
yields the hybrid system. 

Now we to the v5lj
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stage of the weak beam-plasma instability, con- 
sider an initial condition consisting of a cold- 
beam: c$’ = 27rj/N, pj = 0, and no field, @O = 
0. Linearizing the Hamiltonian about this equi- 
librium, one obtains the quadratic form 

j=l 

(35) 

The resulting linear equations of motion can 
be straightforwardly diagonalized to obtain the 
characteristic polynomial a2jvV4 (w6 - 1) = 0, 
where the solutions have been assumed to vary as 
e-‘O’. This has the solutions o3 = f 1, which in- 
clude the standard beam-plasma instability fre- 
quencies together with their conjugate roots as 
required because of the Hamiltonian nature of 
the flow (recall that if o is an eigenvalue then 
m*, -m and --o* must also be eigenvalues). In 
dimensional units, using Eq. (27 ), we have 

&jj = ob eijn/s, j = O,l)...) 5, (36) 

which includes the unstable beam-plasma mode 
(the case j = 2). We can physically identify 
the eigenmodes by considering the equations of 
motion. Differentiating the equation for @ twice 
and substituting fort gives 

-%f Sij = id@, (37) 

upon noting that C e-2%? = 0. This shows 
that the nonzero frequencies are associated with 
nonzero @. The eigenmodes for the conjugate 
roots, o*, --o and -w*, are the same as that 
for w except for varying choices of signs. The 
remaining roots of the characteristic equation 
(w = 0 of multiplicity 2N- 4) have eigenmodes 
with 6@ = 6@* = 0 and positions given by the 
N - 2 independent solutions of C e-‘c’i” St, = 0. 
The double multiplicity of each of these roots 
arises from allowing the momenta to be nonzero, 
6pj 0; St, so the mode is rigidly translating. 

As will be seen in the next section, the linear 
beam-plasma instability saturates by trapping 
the particles in the electrostatic well of the wave. 

2.4. Single particle case 

The only exactly solvable case of the Hamilto- 
nian Eq. (26 ) appears to be that of a single par- 
ticle. Use of the conservation of total momen- 
tum, Eq. (33)) reduces this case to one effec- 
tive degree of freedom, and it can be integrated 
by quadrature. When N is larger than unity we 
expect to lose integrability. It will be of interest 
later to consider the case of Nm particles clumped 
together, and we temporarily ignore the remain- 
ing particles. We call the clumped particles a 
macroparticle. In this case, Eq. (26) becomes 

H ” = --2N&)1’2cos(4-e), 
2N, 

(38) 

where p = Nmpl = Nmp2 . . . . is the macropar- 
tito  TD 2t8652 4-eo249  Tw (and ) Tj
0 4t.933e56 0  TD 3  Tr7er 

casl 
(. ) Tj
0  Tr 5.76 0  TD 3  Tr /F85 TD 3  Tr 50.0348  TTc 0.1982  Tw  macrop202 (. j
0  Tr -209.28 9.6 95 TD 3  Tr95 TD 74 duc.2241  Tw (cluw (H ) Tj
0  Tr.08 0  TD 3  Tr -0.1478  Tc 0.1478  Tw  (= ) Tj
0  Tr 12.482029  Tw (an0-0.1229 onc 0.1414  Tw (the ) Tj
0  Tr 19.2130 TD 3  Tr30 TD 74 degre.1368  Tw (ign1 ) T Tj
0  Tr 14.16 0  TD 3  Tr -0.1982  Tc 0.1982  Tw (of ) Tj
0  Tr 12.24
-03TD 3  Tr 20.0643 fre.do  Tc 0.24  Tw40er ) Tj
0  Tr 22.08  TD 3  Tr .0643    Tw (tempora (w ) Tj
0  Tr 12.24
6  TD 3  Tr6-0.1196 defin Tc 0.1786  Tw cles ) Tj
0  Tr 39.84 0  TD 3  Tr -0.1414  Tc 0.1414  Tw p200  Tj
0  Tr -179.28 -12.059 TD 3  T059 TD 78  TtaTc 0.06  Tw (N3he ) Tj
0  Tr 17.523139  Tw (a3139  Tj
0 4t.933e6 0  TD 3  Tr4es ) Tj
0  Tr 42-13.2  TD 3  Tr76  TD 3  Tr7-0.1368 PTc 0.0576  Tw (p ) Tj
0  Tr 11.04 0  TD 3  Tr -0.0576  Tc 0.0576  Tw0. ) Tj
0  Tr 66.41 Tj9 TD 3  T/F5 19.44 -0.0418  Tc 0.0576  Tles ) Tj
0  Tr 39 Tr 2  TD 3  T172  TD74 +Tc 0.0576  Tw0. p 

ign1he 



J.L. Tennyson et al. I Self-consistent chaos in the beam-plasma instability 9 

-1 

P 

-2 

1 

0 

P 

-2 

-n Ovr K 

Fig. 1. Contours of H, Eq. (39), in the single particle phase 
space 
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Fig. 2. Plot of )@ (7)1, the normalized wave amplitude, for 
N= 10000 particles initialized as a cold beam. 

predicted by Eq. (36) with the phase velocity 
ud = R( e2ni/3) = -0.5. As the wave grows, the 
beam experiences a growing sinusodal perturba- 
tion, and as can be seen in the density plot of 
Fig. 3, the beam density also varies sinusoidaly. 
Near 7 = 16 the beam curls over as the particles 
begin to oscillate in the wave. Consequently the 
amplitude of the wave reaches a maximum. 

At this stage the beam density, & (r, 7), de- 
velops cusps at the positions where the beam 
curls over, see Fig. 3. Note that though there 
are many spatial harmonics in the beam density, 
the single-wave model does not allow the devel- 
opment of similar harmonics in the potential. 
These would lead to the growth of other waves 
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and undoubtedly greatly change the subsequent 
behavior of the system. 

None-the-less, the subsequent development of 
the OWM dynamics is quite interesting. As the 
beam particles begin to oscillate in the wave, 
their oscillation frequencies depend upon their 
energy, just as for a single particle in a fixed po- 
tential. Thus as the beam begins to rotate about 
the potential minimum, those particles closer 
to the center have larger oscillation frequencies 
than those near the “separatrix”. 

If the wave amplitude were fixed, one would 
see phase mixing of the particles (visualized 
as an ever tighter spiral in the particle phase 
space), and the oscillations in the particle total 
energy would damp away-this is the mecha- 
nism of Landau damping in a large amplitude 
wave discussed by O’Neil [ 171. 

However since 214 = -0.5 and the beam is ini- 
tialized at v = 0, when the beam particles oscil- 
late in the wave, their net momentum also oscil- 
lates. Hence, because of the conservation of to- 
tal momentum, Eq. (33)) the wave momentum, 
J, must also oscillate as well. Therefore the wave 
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Fig. 4. Plot of the beam particle phase space at 7 = 641 
showing a well defined macroparticle and chaotic sea. 

title in a given oscillating potential has chaotic 
zones, especially for the regions near the oscillat- 
ing separatrix. In the beam particle phase space, 
Fig. 4, we show the phase space positions of each 
of the beam particles at a futed time. Note the 
two distinct regions: one chaotic in appearance 
with a nearly uniform density, and the other a 
more coherent cluster of particles. In the cluster 
one 
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4. (a) - (b) - 

4. Cc> - (4 - 

Fig. 5. !kquence of beam phase space plots over one bounce period. Note that the macroparticle.bounces coherently in the 
wave, and the wave amplitude and chaotic sea boundaries also oscillate periodically. 

in the same context by Smith and Pereira [ 61, 
who 
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-4.16 

BEAM-PARTICLE TEST-PARTICLE 

Fig. 6. Phase space plots comparing the full simulation of Section 3 with the dynamics of a test particle in a given 
time-dependent potential @ (7) as determined by the simulation. Shown are several test particle initial conditions at three 
different times during a cycle. 

4. Chaotic sea model 
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- For the single particle Hamiltonian, there is a 
second stable equilibrium corresponding to the 
particle at rest at the maximum of the potential. 
Is there a periodic state of the many particle sys- 
tem near this equilibrium? 
- In the OWM model, only a single Fourier har- 
monic of the electrostatic field is kept. What is 
the effect of adding additional harmonics? 
- The chaotic sea Hamiltonian should exhibit 
the full array of possible Hamiltonian motions. 
For example there should be fixed points, pe- 
riodic orbits with various frequency vectors, 
quasiperiodic orbits (invariant tori), unstable 
manifolds leading to homoclinic phenomena, 
Arnol’d diffusion, ect. Are there many particle 
states that correspond to these motions? 
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