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The effect of self-consistency on Hamiltonian systems with a large number of degrees of freedom is investigated
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low degree-of-freedom model is derived that treats the clump as a single macroparticle, interacting with the wave
and chaotic sea. The uniform chaotic sea is modeled by a fluid waterbag, where the waterbag boundaries correspond
approximately to invariant tori. This low degree-of-freedom model is seen to compare well with the simulation.

gree of freedom [1]. Often, the systems studied sional approximation, for example to study the
are low dimensional approximations of many motion of a single star in a given galactic grav-
Uons can oe given wiin Only a Iew aegrees oI €rences 1n |1 )). SUcn an approximauon 1s not
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of degrees of freedom is essentially infinite. in electromagnetic fields, where the fields pro-
Generally, one expects such systems to exhibit duced by the particles are ignored; the motion
greater chaos when the dimension increases; of tracer particles in a fluid, where the influence
of these particles on the fluid velocity field is
! Posthumous. Prepared by J.D.M. and P.J.M. ignored (the passive advection problem); and
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There has been little work on the effect of self-
sible in a system with a large number of degrees

to result in dynamics with “effectively” few de-
grees of freedom.
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remainder of the modes—this is easily justified
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showed that the wave grows in amplitude un-

—nf frsedam for ghe inclngion af selfernneistepcp——riliit trine tha kacm-naaticles. 1t then parratas
and begins to oscillate in amplitude as the beam
particles slosh in the wave potential. At this
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half degrees of freedom, and so the motion
can be chaotic. However, each of the parti-

] ﬁamﬁioman ;0!' eacﬁ pai ElCiC ﬁas one anﬁ a %C neaect these modes; this 1S justitied, tor

example, if the system has a finite length, and
the s1deband wavenumbers are forbidden by

of the field is glven Thus each partlcle experi-
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a rigid bar in phase space. When the beam 1s
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extent that the other partlcles contribute to the
single mode of the field. This is in contrast to

particle. This latter case is considerably more
difficult.

Models similar to the one described above
may be appropriate for many physical situations;
for example, a galaxy with a predominantly axi-
symmetric gravitational potential that is per-

poss1bly chaotlc motlon in the correspondmg

field. Similar effects occur for planetary rings,
ke m intggactionijp accalerajars teag

tate Mynick and Kaufman computed the fre-
quency shift and amplitude oscillations of the

of the plasma wave oscillates, the beam parti-
cles can experience chaotic motion. They stud-
ied the motion of a test particle in a model of
this oscillating field and showed that much of the
test particle phase space is indeed chaotic. How-
ever, there is an island in the phase space where

the correct region of phase space to be trapped
in this oscillating island. Later Adam, Laval and
ca {
o . CF — pewwae

" The specific problem we consider is the beam-
plasma instability. The formulation is due to
O’Nell, Wmfrey and Malmberg (hereafter re-

€am . Ol charged partiCles moves in a back-

ground neutral plasma. The system is unstable

ticle, interacts with the plasma wave. As we will
show below using the Hamiltonian formulation,
this two degree-of-freedom system is integrable

_!—

1t was shown € macroparticle system has
solutions which correspond to periodic oscilla-

I Lstydig] e madelip which = 500! Se—



J.L. Tennyson et al. | Self-consistent chaos in the beam—plasma instability 3

tions of the bunch in the wave. side the oscillating separatrix of the wave. We

Related self-consistent problems include model these boundaries with sinusoidal curves,
the interaction of a single particle with many an assumption consistent with that of the single
waves [8] and the interaction of one wave with mode in the potential. Finally, the frequency
many other waves [9]. The more complicated shift of the trapped particle oscillations due to

wave-particle turbulence, and it is not clear if
the analysis of this paper can give any insight

into this case. 2. Single wave model
In Section 2 we review the derivation of the
OWM model, obtaining the Hamiltonian formu- O’Nell Wmfrey, and Malmberg (OWM) [2]

served at least 100 periods of these oscillations; sented by Mynick and Kaufman [5], discuss lin-
as far as we can determine, the oscillations per- ear instability, and finally consider a special case
u . il I all . : i ole ] '1"1111 1
ticle in this periodic potential, showing that a 2.1. Derivation
substantial portion of the original beam is in-
deed trapped in a stable island in the test par- To obtain the single wave model, the TCSDOHSC

in the chaotic region of phase separately. We consider only

beam finds itse

space, and spreads more or less uniformly over sional, collisionless, nonrelativistic, electrostatic
this region. The upper and lower boundaries of case. The total electron density

this “chaotic sea” are formed from invariant tori n(x,t) =ny(x,t) + nb (x,1)

of the test particle system.

I !&%ﬂ
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tions of the boundary of the chaotic sea and are

derived from the “waterbag” approximation. mx; = —eE(x;,1), (2)
3 ir - glagw

case the simulations show that the phase space phase velocity of the resulting instability is much
density of the chaotic particles is indeed nearly larger than the velocities of particles in the back-
constant and the boundaries of the chaotic zone ground plasma: the plasma responds nonreso-
are formed from invariant surfaces well out- nantly, and trapping effects of plasma particles
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dneny(x,t) = (1 — €)p"(x,t), (3)

where ¢ is the electrostatlc potentlal E = —¢'.
hotitutine thicj

€p = dmeny(x,t). 4)

tion is most easily treated by Fourier transform.

k-space is relatively narrow in units of 2z /L.
In this case, if k represents the most unstable

single wave during the linear growth stage. Of
course, some time after nonlinear saturatlon of

M‘-ﬁ‘—““ S bl e

stable spectrum epen S on the sm parame €r
/ o

one such zero retaining only the first derivative
of € with respect to w:

e(k,0)% € (k,00) + o= o, (@ a0)
=€ (w—awp). (5)
For example, for a cold plasma € = 1 — w2/w?,

and 9€/0W|w=w, = €' = 2/wyp. Transforming
back to the time domain and using Eq. (4) then
gives

: . 4ne N ks
Ey + imgEy = EZ_JZ e kO (6)

[')j =—e (Ek elkx; +E_; e_ikxj) . (8)

Equation (8) together with Eq. (6) are the closed
dynamical system that governs the interaction of
a single wave with the beam particles.

2.2. Hamiltonian structure and derivation

Now consider the derivation of the equations
of motion, Eqs. (6) and (8), within the Hamil-
tonian context. The derivation proceeds by first
considering the kinematics, i.e. the dynamical
variables used to describe the state of the system,

T w ATTT vv.mna v Pvm“rta llumkl‘lll'v:.llljﬂ‘ - ‘”% ﬂ:j:nmhmﬂﬂ;__[qmﬂ-k:_ — -~ dle
appropriate Hamiltonian.
We begln the first part by supposmg that

beam density of Eq. (1):

1,2,..., M. The first N(< M) of these parti-
cles are singled out to represent the beam dy-

0
N
p A 7 s \7)

namics, while the remaining M — N particles
represent the background plasma The phase
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fx,p,t) = folx,p,t) + fo(x,p,1)
N

aG M afp e s

P e

——— - =Nt
M . T [ J \UJ\]/ UJp
=N+1
PR Y 27 WS (no n () (Q) JEN

| wc Paissop hrackpt in terms nf Orj, i} gb&rﬁ
| J=1,2,...,M,hasthe stan}am car‘xo‘;ucal torm

rJJ \6pj/ 5fi)= rJ

FH r r / £ ~t 0 2
by vanauon of Eq. (9) with respect to the plasma
- | - ala L 1 iad T

[g, 2] = Z 8x, 6p, 8x, 31),

j=1
=[g,h]s + [8:h],, (10)
where g and A are functions defined on phase

space.
It is desired to describe the state of system
r U T PRSP CYERES - PV RV R ET RS

result 1s finally

dg _ [( D 6G
2 - (axafp)d(x x;)8(p - p;) dxdp

8 éG |
6x5fp (x;.05)

ag 0 oG
f( 237 )3 - %) 6w -p) dxdp

TOT UIT UTAIIT PAartCIcs. FIIOWCTVCT, TUT UIT UaTCKks
ground plasma, the phase space coordinates of
these particles will be replaced by a Vlasov type
distribution function, f,. This can be achieved
by mapping the Poisson bracket of Eq. (10) to
these variables; but f;, unlike (x;,p;), is not a
canonically conjugate set of coordinates, i.e. f;
is a noncanonical variable, therefore the re-
Q T

form [11]. In order to effect this transformation
the chain rule [12,13] for functional derivatives
is required. Suppose

g(xj,p;) = Glhl, (11)

where j = N+ 1,N + 2,...,M. Here G[f,] is
a functional of f,; the relationship between the
phase space function g and the functional G is

=\_3_p-37p”(-xi’1’1)’ (1Jy
Insertion of Eq. (13) into the second term of
Eq. (10) yields the bracket

(6,1 = [ £ {jg ﬁfp} dxdp

N
0GOH 0OH 3G
—_——— -, 14
+§(8xjapj anapj) (14)
where
0gdh 08hog
{&:h} = Bxap 5)75; (13

Here the quantities G and H are functionals of
Jo, but according to Eq. (9) they can be thought
of as ordinary functions of the beam particle co-
ordinates (x;,p;) where j = 1,2,..., N. Note
that discreteness has now disappeared from f,.

obtained by varying both sides ot this equa-

tion:
M
og og
og= Z ( ox; + 6pj>
jone1 \OXi 9p;
=0G

ground Vlasov plasma electrons is obtained by
inserting

f(xap’t) =.fi)(x’p’t)
N .
+Z5(x—xj(t))5(P—Pj(t)) (16)

=1
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H{ fo;%j,p;]
1
N 2

+ 2 (‘2&,;, —egp(x)) - %e(pb(xj)) ,  (18)

P frdxdp -

N
j=1

where ¢, (x;) and ¢, (x;) are the contributions
)_th rostatj i nd

6x,- ap,- 6xj ap,-
_i4n (0g 0h oh 0g (20)
L e \BEL.OE_, OE,0E_;)"
e U TN B g & et Y

Egs. (6) and (8) in the form

sumed to be described by an equilibrium distri-
bution function of compact support in velocity,
plus the single linear wave, whose phase velocity

wave-particle ellccis are CHIINated 1 L

e ——
yields the hybrid system.

Now we can turthte thgjtask of obtaining, from
the hybrid system, the approximate system of
M ‘E;‘— . 4 a1 . . . . .

The bracket of Eq. (20) is not quite canonical;

however, with the substitution
7 4m\?

=17 _iA

UadllUil Ul LT UIDLIIUULIVILL 1UllViivLl, UIC allalydid
of {14} and [15] implies that the linearization of
the plasma energy becomes identically the well-
known expression for the dielectric energy of a
plasma wave. Second, the self-interaction poten-
tial of the beam, ¢y, is neglected in comparison
to that of the plasma, ¢,, a justifiable assumption
in light of smallness of ny/np. Thus, Eq. (18)
becomes

L
H(Ep,E_i, Xj,Dj) = —— wo€'|Ex|?
4r

p; ie ikx; ie —ikx;
+Z (ﬁ——E—Ek el +TC_E_k € x,> .
(19)

It remains to find the appropriate Poisson
bracket in terms of E; and E_; instead of fp.
Since the plasma is in essence being modeled
as a fluid, an easy way to obtain this is to map

_~[0g dh 8h dg
[g. 1= ]Z (6x, op;  0x; aPJ)
9g Oh _9h dg
(5557 ~3597) (23)

while the Hamiltonian of Eq. (19) becomes
H(9,7,xj,p;) = wo T

+Z[ﬂ-———(%:—) T2 cos(kx; 19)]

(24)

To complete the derivation, it is convenient to
introduce scaled, dimensionless variables based
on the fundamental frequency,

w3 _ 4z CZN

b7 TmLe
Here w, is a harmonic mean of the beam’s
plasma frequency and 1/€’, which is of order

(25)
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small parameter (ny/np)'/3 is represented by T oD+’
Ao .

s e———eth/ ratin ardea. By 2 carmipnca af tima danan PP R PURIPL X 1t s S
H(J,6,p),¢;) - -‘1—=-i—2e‘i‘f
Js») dT N'j_1 ’
J 1/2 =
Dy ~ COS(f-—O)] ; 2¢; "
Z[I $-2(5) ! 4 _ i o —igr e (32)

= 12

. (26) Note that these equations hold for arbitrary
where the dimensionless variables are defined by choices of the physical parameters, such as ¢/m

ship between scaled variables and physical vari-

2 . .
K o e ” waza ables which changes, (Ofcourse thesinglewave

frame moving at the phase velocity wo/ k This symmetries) which is the translation, &; — £; +
. L}~ : e = G “‘:L-_“_‘_ Py el Chicaicnalinnsth ha al W
- e — . ey
e T ' (
It is often convenient to use a noncanonical P = Z o+ J (33)

wave amplitude variable instead of action—angle

variables. This is easﬂz done if we use as inde-

plex conjugate @* defined by PO+ pj(&;—0) which gives the new momenta,
I (¢} = pj, P), and angles, (y; = & —0,6). The
(ﬁ) e new Hamiltonian is

¢(1.') =

and the Hamiltonian takes the form

the first term is the particle kinetic energy and 2.3. Linear instability
the last two represent the electrostatic potential
energy. The equations of motion are obtained To establish the fact that the Hamiltonian of

from the Poisson bracket, Eq. (30) properly describes at least the linear
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0. Lmeanzm the Hamlltoman about th1s equi-

i E 10‘1’(151 CV7 riow U(,{ <

@nialty o nmantienc of onotion
be stralghtforwardly diagonalized to obtain the
characteristic polynomial w?¥—4 (w®-1) = 0,
< Jog o n 2

— * | Oy

4+ aoa g

£) nnnnareadn an tlhnt af o piwolosoes _

tum, Eq. (33), reduces this case to one effec- |
tive deeree of freedam and it can be intesrated ‘

by quadrature. When /v 1s larger than unity we

expect to lose integrability. It will be of interest

'-m -“”7_"‘ e trm  TRYa T 1‘{.} y:-'Y

T —"

LU i U a U U d \J d dAlU U

the flow (recall that if w is an eigenvalue then H = -2-%- -
m

w*, ~» and —* must also be eigenvalues). In
dimensional units, using Eq. (27), we have

2Nm(—]{—,) cos_(énl—heﬁ), (38)

where p = Npp; = Nups.... is the macropar-
ticle momentum. The Hamlltonian H can be re-
duced to one degree of freedom by defining the
total momentum P = p + J as before to obtain

p? _py\1/2
H—EN—m PN"’) cosy . (39)
The equations for this case were studied in
detail by Adam, Laval and Mendonca [7], who
did not use the Hamiltonian approach.

a)j=wbeij"/3, j=0,1,...,5, (36)

which includes the unstable beam-plasma mode
(the case j = 2). We can physically identify
the eigenmodes by considering the equations of
motion. Differentiating the equation for @ twice
and substituting for & gives

2N (

= — B [r e ttamiag ol 1 Yo Tl A ey
a3 T N & C V0 =107, nondegenerate fixed points. These occur at the

points defined by

: -8 _ i N,
upon noting that )~ e/ = 0. This shows ~p3P 4 Np3im _ o,

. . . =0orn. (40
that the nonzero frequencies are associated with N Yo (40)

nonzero @. The eigenmodes for the conjugate
roots, w*, —w and —w?*, are the same as that
for w except for varying choices of signs. The
remaining roots of the characteristic equation

N —21ndependent solutions ot ) S e %/ d¢; = 0.
The double mu1t1p11c1ty of each of these roots

The fixed point with (py < 0, yp = 0) is stable
and corresponds to the macroparticle sitting in
the bottom of the potential well. The two fixed
points with (py > 0,y = =) are less intuitive.

potential well. The lower momentum particle is
unstable while the larger momentum particle is

L ® Ir—: 1 A T,
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ST

I ')I
Me —Nm

(41)

2Jo—-po’
_I-Isre M_is the seotincmoegs due tz tho-galfs

in a fixed potential well. This gives a bounce
frequency of

a-2®)"0-8). @

The first factor is just the bounce frequency of
a particle in a fixed well, normalized in accord

4: vt Do 97) Tlaa lats 4 -, adon dan ‘
r—'_,_- ‘

VAIVAGDV 11k 1LV 11 U\iuou\ay, Ad AIdDV ULDVUIDUAL 111 LJ_'
ancearctletle s o scas

il l“_

to zero, corresponding to the initial conditions

J(0) = p(0) = 0. In this case J (1) = —p(7)

e
LTI - )

A

From the simulations we will find Np ~ 0.4N,
and thus that

Fig. 1. Contours of H, Eq. (39), in the single particle phase = —0.74, l(pl =029, wp=094. (44)

space (p,w). Units of p (and P) are Nm (Nm/N)/3. In
the upper figure P = 0 and there is one fixed point; in the
lower figure P = 2 and there are three fixed points.

3. Simulations

space. Small oscillations about the stable fixed Simulations of the model of Egs. (32) were

EngI are sy et i © 1 ; + ~pl Lyl Lhz;'im:i !;:f }_

- =
The final “fixed point” is the degenerate case plectic, leap frog method.
(p = P, y = arbitrary) for which the wave am-

LT

! + s I
bility results, as discussed in the previous sec- In the simulations the particles are initial-

=——1ian 'if_"‘p areM jm::n"q

>

¥

WI V = U”. For small 7 the wave ampli-
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and undoubtedly greatly change the subsequent
ol behavior of the system.

None-the-less, the subsequent development of

T N\N\NW\]VVW the OWM dynamics is quite interesting. As the

T beam particles begin to oscillate in the wave,

their oscillation frequencies depend upon their

Oty e energy, just as for a single particle in a fixed po-

tential. Thus as the beam begins to rotate about

Fig. 2. Plot of |@ (1)|, the normalized wave amplitude, for the potential minimum, those particles closer

= 10000 particles initialized as a cold beam. to the center have larger oscillation frequencies

than those near the “separatrix”.

If the wave amplitude were fixed, one would
predicted by Eq. (36) with the phase velocity see phase mixing of the particles (visualized
vy = R(e¥/3) = —0.5. As the wave grows, the as an ever tighter spiral in the particle phase
beam experiences a growmg smusodal perturba- space), and the oscillations in the particle total

¥ &leﬂ Sﬁ‘d EB=€iis Ov Svwar 2z v UVMDAL] ylvb wa v v VALIW AW vasw saiwwasee
P .

s seskess iz, : bmmmmhm— nj .

the single-wave model does not allow the devel- amplitude is not fixed and each beam particle
T'hese would Iead to the growth of other waves nown, the phnase space 10T a single beam par-
(@) " (®)

2mn
10*

VALYV,
‘fw\,v‘,

S TR
g &

Fig. 3. Plot of the beam density as a function of position. The sinusoidal distortion of the density due to the growing wave

 — i ) sty e ] i SN | DY TSR =ticlo has facmead
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of the cluster oscillate 180° out of phase. This

s, - ati] el T 57 TR+ DT

e N TR

with a nearly uniform density, and the other a
more coherent cluster of particles. In the cluster

e

these cases some subset of the particles remained

system did not appear to settle into an equilib-
rium. Cold beams with nonzero momenta also

tm 3 %) igm ‘“hirb JEE‘FA Qﬂn;nd_;“]l “Amm ‘mm‘_ Iny srrata hio in-

sisted, and indeed, as can De seen 1n Fig. )
oscillations become increasingly periodic with
time. Furthermore as we varied N up to 10° and
improved the integration accuracy, we noticed
thatthese osedlations became more pertodie-and
constant in amplitude as the number of particles
increased and as the accuracy improved. Thus
we believe that the asymptotic state is a periodic
one.

Meanwhile, the particle phase space exhibits

particles—those with relatively large energies
in the wave frame—experience chaotic motion,

and spread out roughly uniformly in a region of

phase space whose average width is Aw = 4.7.

-er

1n1tial condiilons that will give rise 10 a periodic
final state.

3.2. Test particle

To investigate further dynamics of the beam
particles, consider the “test particle” motion of
a single particle in a given oscillating potential.
This is obtained from the nonself-consistent, one

_

1/2
L) cos (¢-0(m),

(45)

H(p.& ) = §p*-2(

T
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4 (a) 1 (b) 1

Fig. 5. Sequence of beam phase space plots over one bounce period. Note that the macroparticle bounces coherently in the
wave, and the wave amplitude and chaotic sea boundaries also oscillate periodically.

Here we determine J and # numerically, from in the plots represents the position of one of the
the simulations of Section 3.1, building these 10000 beam particles. Note that the macropar-

A stroboscopic plot of the test particle dynam- verifies an assertion in [6], where it was merely
ics is shown in Fig. 6 for several different val- noted that some fraction of the beam particles
ues of 6. The dots represent the trajectories of initially stretched across the position of the test
a number of different test particles. As was also particle island.

noted in [6], there is a prominent stable island
in the test particle phase space which oscillates
exactly out of phase with the potential; much of
the rest of the phase space is chaotic. Also shown
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BEAM-PARTICLE TEST-PARTICLE

7=133

—4.76 1 | ) J | —L | L J
-n 0 T ~% 0 T
g 3

Fig. 6. Phase space plots comparing the full simulation of Section 3 with the dynamics of a test particle in a given
time-dependent potential @ (7) as determined by the simulation. Shown are several test particle initial conditions at three
different times during a cycle.

4. Chaotic sea model ‘ freedom, which approximately describes the full

10001 degree-of-freedom system. In the model,

AsGvke have seen from the simulations, the as noted above, we assume that the clump of
asymptotic state of the cold beam initial con- regularly oscillating particles is localized enough

dition, evolved under the OWM Hamiltonian, so that all these particles can be treated as one

appears to be almost exactly periodic. Approx- located at (&,p). This macroparticle contains

—) Lol S Sl =0T (R S . POTTY ") i patttehimitidutla i e—

of particles that oscillates in the potential well —eNp. The approximation that the Ny, particles

formed by the wave. The remaining particles can be treated as a single particle ignores any in-

" . ‘(‘
- - == ~ir =y

il w1

1 Dy e L A ) o N U A

- » -swra U voiann

reduced Hamiltonian model of four degrees of

D - [] awyrs v - v nw

man [5] who assumed that the cluster of parti-
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itinite TV~ guplatige of thadindd i th'awd fn

phase space depsi queqann_ﬁars

. e e e N — "~
i ]
111 VETOCITY SPace. We assUume tnart Iese particies ;c_: ( £, —v-) + _LE e—1k%m ) _ (50)
can be treated as a continuum with a constant €
L= @be-hnmhfgmmﬂ'eq_r i e e
h
'\‘
Uy
kvl - _ ki
ne(x,1) = /j;dv = fi(vy —v_) (46) ox=—p—, Vas T (D)
v

In terms of these variables the equations of mo-
e = 1Tt 8 98T e R,
ber of such particles in the length L will be de-
noted by N, = N — Np,. Particles in the chaotic b =i Ve —V2) + TALJC ,
sea evolve according to Eq. (2), and hence f. ; N A . N
evolves according to the Vlasov equation. As is E =ik el —ip* e,

two equations tor the evolution ot the bound- WIEIC Aw = W4 —@W- 15 NC average, nonaimen-
aries [18]. These equations are called the wa- sional width of the chaotic sea.
terbag equations: This set of equations is also a Hamiltonian
v, v, system, with Phe wave action-amplitude Yari—
TS + v, x = —eE, ables defined in Eq. (28), and the new action-
amplitude variables for the chaotic sea defined

0v- 4 v - ek (47) by

at T Ox )

Following the philosophy of the derivation of V. - ( Jr Aoy =it
thh 11 2.1 .l 1 fmad + = AL H

in ’Uj:(x): e = \ Nc } ~ s \wwy
vy = vd 9+ U Pl * 4% e ikx (48) which results in the Poisson bracket relations
The equations of motion then become Ve Vel = :|:1A—w (54)

9
( o T 1k'”=t) Vs = —eky, (49) The Hamiltonian takes the form



J.L. Tennyson et al. | Self-consistent chaos in the beam—plasma instability 15

tion can also be derived from Eq. (33) by split-

served quantmes besides the energy Thus the

_ I S
Sl A s—

and should exhibit the full complexity of such

H p? 7 diffusion.
= 2Na o)y —o-J- The stable equilibrium of Eq. (56) corre-
= ‘ —
Nc 172 Nm
o= (§ay) - =7 (37)

The first three terms in the Hamiltonian repre-

of macroparticle energy and harmonic terms for
the oscillations of the chaotic sea boundary. The
last three terms give the electrostatic interaction
energy.

Thus we have reduced the 10001 degree-of-
freedom Hamiltonian to one of four degrees of
freedom, which describes well the motion in the
periodic final state of the simulations, provided
the three parameters @, , @_. and Ny, are given.

036 ,B = 40 andAa) = 4.7. For

gives a
these parameters we can solve Eq. (59) to obtain

2 =-0.66,
V] =0.29,

|®| = 0.73,
IV_| = 0.35. (60)

On the other hand, using Fig. 5 to determine
the average phase velocity of the wave in the
simulations we obtain =~ —0.67. The average

=#"h‘“ of J@) from Fie- 2 is 0.75 . Bofh ol these o,
= ) — —

Bvnge | T U Je BRAL AAWYY AL VT W VMAIAW VAAW SAAWIAMN LA WS T eAWew

@lmemenim given e Qa=niy

than.Fg (3Q) givgs thamacrqngrficle

tum in the wave and macroparticle, and the last
three are the contributions of the chaotic sea.
These latter terms include the momentum in the
oscillations of the waterbag boundary Jp—-J-,

To compute the frequency of small oscillations
about the equilibrium, we first eliminate the ac-
tion J using the conservation law (58), defining
phases ¥ = 6 — &, and w4 = 0+ F 6, conjugate

i 0 | 5, conjuga 1
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JEHE lin.gg—l'in . 1

0 W+ ,0 l/l_ ) are the dev1at10ns from equlhbnum

4
ITIVE deTmite. IThe matrix é i!!e C§ICCI1VC spring

constant matrix, turns out to be diagonal. In or-

assume that ¥ = y, = 0, while y_ = =n. This
is consistent with the fact that the lower bound-
ary of the chaotic sea is observed to have a 180°
phase lag with respect to the upper boundary.
The frequencies of small oscillation are given
by the square roots of eigenvalues of the matrix
KM ™!, For the parameters of the simulation, the
mass matrix is diagonal to a good approxima-

e ool
electrostatic interaction of many particles with a
plasma wave. The wave arises from an instabil-
ity (the beam-plasma instability) of the initial
state corresponding to a cold beam of particles.
In the simulations, the asymptotic state corre-
sponds to a periodically oscillating wave ampli-
tude together with a trapped clump of particles.
About 42% of the particles are trapped by an
approximate invariant-surface within the oscil-

tion. The element M. 1—11 turns out to be identical
to 1/M. of Eq. (41); neglecting terms of order
J1/J, the other diagonal elements are

v-1 _ 1Q2-w, a1 12 -w-

lating wave, while the remaining particies move
chaotically—becoming successively trapped and
detrapped.

We modelled this motion by a four degree-of-

R

The matrix K is

K = diag(28VJ, 2a/JJ ., 2a/TJT,). (63)

Using the values obtained before for the equi-
librium, we determined the eigenvalues numer-

chaotic sea, and one to the wave. This model
quantitatively captures the asymptotic state of
the effectively infinite degree-of-freedom sys-
tem.

One would like to speculate that there are
other physical systems for which the effect of

oallyfremthe-fill mairin Tho thicc Ssciliation
frequencies are

seii-consistency woulia oe simiiar. For exam- ™

ple in the case of galactic dynamics, the self-
PaYes 1 et mrnmacatine Af a dancitsr swrosra swawald

A AR AAAWY Wi VAAWMY WWAAWUL WAL VW VALY AVeAlaW WSwAL

lations observed in the simulations. The eigen-
vector of this mode corresponds primarily to the
. o £ - . > B

VIAWAW WA MRANE MWW W NWE WAL WAL TTALAWAL WA W WAAAWA WALWAJ

interacting with the wave.
As usual, a number of open questions remam

;ﬂﬁl— e

modes; however, it might be possible to deter-
mine these through careful simulation.

g o) PUIRIPREPI AR, [ RS IR R S, V. SR U, P §

L PN 1|-'

discussed at the end ot Section 3.1.
- Is there a way of self-consistently calculating

U ., PR, Y (I

alei ke al4l i AT ~—a
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_motion in a large amplitude plasma wave, Phys. Fluids
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the effect of adding additional harmonics? nonlinear Langmuir waves, Phys. Fluids 24 (1981)
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. . . . N LV ] wease ~ KAL J 5 Ar oA ¢ AUVISLAMAY MLANe 5 Remws T WADey & 1 Waawgwemewanase

the full array of possible Hamiltonian motions. ear diffusion far from the chaotlc threshold, Physical

_LHW:MM b ﬁ‘&@jﬁ“ﬂﬂ_ﬁﬁﬁwﬂﬁfﬂ
4

manitolds leading to homochinic phenomena.. . three-wave interaction: inteerable case of this system

E‘l’ﬁ-— —— —r '
!I!”!! e M“!!! SHETS ﬂ!!!! ToTonT? [10] J.R. Cary, L. Doxas, D.F. Escande and A.D. Verga,

Enhancement of the velocity diffusion in longitudinal
plasma turbulence, Phys. Fluids B 4 (1992) 2062.
[11] P.J. Morrison, The Maxwell-Vlasov equations as
Ackngwledgements a continuous Hamiltonian system, Phys. Lett. A80
(1980) 383-386.

LIC aB LU WOTC dl LT LINLILULE LU CUuSIull OLuu- Pnnceton Plasma PhySlCS Laboratory Keport l’l"l"l_f

Publication Service, 335 East 45th Street, New York,

was prov1ded by the US Dept of Energy Con- NY 10017).
tract No. DE-FG05-80ET-53088 to the Univer- {13] A.N. Kaufman and R.L. Dewar, Canonical derivation
| i f Tavae Ang m of the Vlasov-Coulomb noncanonical Poisson bracketl
9 _ = ]

plasma energy, and Hamiltonian action—angle ariables
for the Vlasov equation, Phys. Fluids B4 (1992) 3038-

References 3057.
(11 D Chad aal d DY \l.—:-‘_. i VY *. 1 1
_- i in A \ L1 v“n“—gh D tbacic Nonlingacingtahilituand chans
. . |

plasma, Phys. Fluids 14 (1971) 1204-1212. [17] T.M. O’Neil, Collisionless damping of nonlinear plasma
e— 4 M0 " VL JRUN) %ﬁ‘ ﬂ — )" ] Jﬁffi‘f'—’ﬁL——

o — mr(w:t

monoenergetic electron beam, Plasma Phys. 14 (1972) (Academlc, New York, 1972), pp. 45-47.

591-600.



