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Abstract 
 We construct an approximate renormalization operator for a two and one half 
degree of freedom Hamiltonian corresponding to an invariant torus with a frequency in 
the cubic field Q(τ), where τ3+τ2–2τ–1=0. This field has irrational vectors that are most 
robust in the sense of supremal Diophantine constant. Our renormalization operator has a 
critical fixed point, but it is not hyperbolic. Instead it has a codimension three stable 
manifold with one unstable eigenvalue, δ≈2.88, and two neutral eigenvalues. 

Introduction 
 A major open problem in the study of Hamiltonian dynamics is the mechanism for 
the break-up of invariant tori in systems with more than two frequencies. The two 
frequency case, though not completely solved has seen many advances in the past 15 
years, including Aubry-Mather theory [1; 2], renormalization theory [3], converse KAM 
theory [4; 5], and the anti-integrable limit [6; 7]. 
 The story has the following plot outline: beginning with an integrable system of 2 
degrees of freedom, KAM theory implies that almost all invariant tori (those with 
Diophantine frequency ratios) are stable to perturbation. However, every invariant two 
torus is eventually destroyed by strong enough perturbation (converse KAM) and is 
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taken to be amplitudes of potential energy terms. Our model is a point particle in the 
plane acted on by the field of three traveling waves, which has the Hamiltonian 

   
H = 1

2(u,v)! " #
# $

! u
v + Acos(2%x) + Bcos(2%ky) + Ccos(2% (t – x –y))  (1) 

Without loss of generality, the wavenumbers (k,  ) can be taken to be positive and the 
energy can be scaled so that the mass matrix has unit determinant, αγ–β2 = 1 

Tori and Frequencies 
 We study the rotational tori, that is tori homotopic to the constant momentum tori. 
The frequency vector ω is the average direction that an orbit moves around the torus 
(assuming this limit exists). We let ω ∈ R3, where the first component gives the periodic 
time dependence, and the length of the vector is unimportant. A frequency is 
commensurate if there is a nonzero integer vector m such that m⋅ω = 0. Such a relation is 
a resonance condition. If ω has no resonances then it is incommensurate. If ω has d 
independent resonances, then it is proportional to an integer vector. The Diophantine 
constant for ω is defined by   C τ(ω) = liminfm → ∞ ||m|| τ m⋅ω  where ||m|| = max(|mi|). A 
Diophantine frequency has Cd(ω) ≠0. 
 The theory of simultaneous approximation of frequency vectors is not as 
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L: A′ = (1+k)3β
2k2 AB, B′ = 1+k

k C, C′ = 1+k
k A  (6) 

This is the approximate renormalization operator. The permutation P corresponds to the 
involution 

    P : k, ,α,β,γ,A,B,C → 1
k ,k,γ,β,α ,B,A,C  (7) 

Renormalization for Q(τ) 
 For the frequency (4) we construct the map LPL2. For the wavenumbers this gives 

     LPL2: (k, )→ k
k+ , k

+k + k  (8) 

It has a unique fixed point, (k,  ) = (τ2–1, 2–τ2), in the positive quadrant. This fixed point 
is a stable node with eigenvalues λ=0.247 and –0.357, and is a global attractor for the 
positive quadrant. 
 Since the wavenumber map is contracting, the wavenumber dynamics is non-
essential, and we therefore evaluate the mass map at the fixed point k = τ2-1 giving the 
linear map 
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    Ac = Bc = 2(τ2 – 1)4

τ10β , Cc = 2(τ2 – 1)
τ4β  (11) 

The KAM fixed point is attracting. The critical point can be studied by taking the log of 
the amplitude map to give, in terms of a = log(A), b= log(B), c = log(C), the affine map 
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