

R

be conservative, or even volume-

classes of maps

$$(\textbf{A}\textbf{A}) \quad \big(h_1^{-1}\cdots h_m^{-1}\big)t\,(h_m\cdots h_1)t$$

$$(\textbf{E}\textbf{A}) \quad \big(h_1^{-1}\cdots h_m^{-1}\big)e_{m+1}(h_m\cdots h_1)t$$

$$(\textbf{EE}) \quad \big(th_1^{-1}\cdots h_m^{-1}\big)e_{m+1}(h_m\cdots h_1t)e_0$$

where h_i represents a Hénon transformation in the form (2) α

Theorem 2 (cf. [9, Corollary 2.3] or [15, Theorem 4.4]). Two reduced words $g_m \cdots g_1$ and $g_n \cdots g_1$ represent the same polynomial automorphism g if and only if n = m and there exist maps $s_i \in \mathcal{S}$, $i = 0, \ldots, m$ such that $s_0 = s_m = id$ and $g_i = s_i g_i s_{i-1}^{-1}$.

From this theorem it follows that

A. Gómez, J.D. Meiss / Physics Les

To prove the second part of the proposition, consider first a linear, nonelementary involution a(x, y). In that case, taking s(x, y) = x(1, 0) + ya(1, 0), we see that $a = sts^{-1}$.

Next, we show that every affine, nonelementary involution (12) is $\mathfrak E$ -conjugate to its linear part a. We know that $(\ ,\)=(a-id)(c,0)$ for some scalar c. Taking s(x,y)=(x+c,y) it follows that $sas^{-1}=a$ and the proof is complete. \square

3.2. Normal forms

We intend to d

Proof. Consider g given by the reduced word (14

A. Gómez, J.D. Meiss / Physics Letters A 312 (