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Thus, the transition rates, εi j, provide the weights of the previous probabili-
ties in the update equation. Unless transition rates are large or observations
very noisy, the probability Pn(Hn = Hı̂) grows and can be used to identify
the present environmental state. However, with positive transition rates, the
posterior probabilities tend to saturate at a value below unity. Strong ob-
servational evidence that contradicts an observer’s current belief can cause
the observer to change belief subsequently. Such contradictory evidence
typically arrives after a change in the environment.

Following Veliz-Cuba et al. (2016), we take logarithms, xi
n := ln Pn(Hn =

Hi) and denote by �xi
n := xi

n − xi
n−1 the change in log probability due to an

observation at time tn. Finally, we assume the time between observations
�t := tn − tn−1 is small, and ε

i j
�t = �tεi j + o(�t) for i �= j, so that dropping

higher-order terms yields

�xi
n = ln f i

�t (ξn)+ ln

⎛⎝1 −
∑
j �=i

�tε ji +
∑
j �=i

�tεi jex j
n−1−xi

n−1

⎞⎠, i = 1, . . . ,N,

where the likelihood function f i
�t (ξ ) may vary with �t. Next, we use the

approximation ln(1 + z) ≈ z for |z| � 1 and replace the index n by time, t,
to write

�xi
t ≈ �tgi

t,�t +
√
�tWi

�t +�t
∑
j �=i

(
εi jex j

t −xi
t − ε ji), i = 1, . . . ,N,

where the drift gi
t = 1

�t Eξ

[
ln f i

�t (ξ )|Ht

]
is the expectation of ln f i

�t (ξ )

over ξ , conditioned on the true state of the environment at time t,
Ht ∈ {H1, . . . ,HN}, and W�t = (W1

�t, . . . ,W
N
�t ) follows a multivariate gaus-

sian distribution with mean zero and covariance matrix ��t given by

�
i j
�t =

1
�t

Covξ

[
ln f i

�t (ξ ), ln f j
�t

t�
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Figure 1: Online inference of the change rate in a dynamic environment. (A) The
environment alternates between states H+ and H− with transition probabilities
ε+, ε−. We analyze the symmetric case (ε := ε±) in section 3.1 and the asym-
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The process {an}n≥1
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Figure 2: Inference of the states, H±, and change rate, ε. (A) The joint posterior
probability, Pn(H

±, a), is propagated along a directed graph according to equa-
tion 3.14. Only paths corresponding to the initial condition (H
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and

Pn(H
±,n−1





1572 A. Radillo, A. Veliz-Cuba, K. Josić, and Z. Kilpatrick

estimate the length of the interval since the last change point. We demon-
strate the inference process defined by equation 3.14 in Figure 2.

The observer can compute the posterior odds ratio by marginalizing over
the change-point count:

Rn := Pn

(
H+)

Pn (H−)
=
∑n−1

a=0 Pn

(
H+, a

)∑n−1
a=0 Pn (H−, a)

. (3.15)

Here log(Rn) = Ln > 0 implies that Hn = H+ is more likely than Hn = H−

(see Figure 2B). Note that P(ξ1:n−1)/P(ξ1:n)
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Figure 3: The performance of the inference algorithm. (A) Performance under
the interrogation paradigm measured as the percentage of correct responses
at the interrogation time. Here and in the next panel, ε = 0.05, and SNR= 1.
The black curve represents the performance of an ideal observer who infers the
change rate from measurements. The green curves represent the performance
of observers who assume a fixed change rate (0.3, 0.15, 0.05, 0.03 from darker
to lighter; see equation 2.1). The solid green line corresponds to an observer
who assumes the true rate and the dashed lines to erroneous rates. (B) The
green curve represents the performance at interrogation time t300 of an observer
who assumes a fixed change rate. The red star marks the maximum of this
curve, corresponding to the true change rate ε = 0.05. The horizontal black
curves represent the performance at times t40, t100, t200, t300 (from bottom to top)
of the observer who learns the change rate. (C) The accuracy as a function of
the average threshold hitting time in the free response protocol. Here ε = 0.1,
and SNR = 0.75. See section A.2 for details on numerical simulations. See also
Figure 3 in Veliz-Cuba et al. (2016).

time. Hence, the observer does not know exactly how to weight previous
observations to make an inference about the current state. As a result,
the probability of misclassifying the current state may not be known. We
conjecture that this implies that even in the limit n → ∞, the posterior over
ε







1576 A. Radillo, A. Veliz-Cuba, K. Josić, and Z. Kilpatrick

The observer can also compute the posterior probability Pn(ε) of the transi-
tion rate ε by marginalizing over all states Hn and change-point counts an,

as in equation 3.16. Furthermore, a point estimate of ε is given by the mean
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Figure 5: Schematic showing the reduction of the full inference model, equa-
tion 5.7, for a two-state (H±) symmetric environment (ε = ε±) carried out in
sections 5 and 6. (A) Observations ξt arrive continuously in time and are used to
update the probabilities P±

t (a) that the environment is in state H± after a change
points. (B) Red and pink arrows from panels A to B represent, respectively, the
summation and averaging of P±

t (a) over a to obtain equation 5.1b for the zeroth
P̄±

t and first Ā±
t moments in section 5.2. Arrows from P−

t (a) have been omitted
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We can substitute equation 5.1 into equation 3.7 describing the probabil-
ity of transitions between time tn−1
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Finally, note that we can obtain evolution equations for the likelihoods,
P±

t (a) = P(Ht = H±, a), by applying the change of variables P±
t (a) = ex±t (a).

Itô’s change of coordinates rules (Gardiner, 2004) implies that equation 5.6
is equivalent to

dP±
t (a)=P±

t (a)
[(

g±t + 1
2

)
dt + dW±

t

]
+
[

a + α − 1
t + β

P∓
t (a − 1)− a + α

t + β
P±

t (a)
]

dt, (5.7)

where now initial conditions at t = 0 are simply P±
0 (a) = P0(H

±, a) =
P0(H

±
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Figure 7: Neural network model with plasticity, inferring the current state Ht
and rates ε± of environmental change. (A) Schematic showing the synaptic
weight w± from neural population u± �→ u∓ evolving through long-term poten-
tiation (LTP) and long-term depression (LTD) to match the environment’s rate
of change, ε± := ε. (B) When the neural populations exchange dominance, their
activity levels u± are both transiently high. As a result, both synaptic weights,
w±, increase via LTP. When only one population is active, both weights decay
via LTD, as described by equation 6.7b. (C) Inference of the rate, ε, via long-
term plasticity of the weights for ε = 0.01, 0.05, 0
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our model the rate variables, u±
t , represent the probability that the envi-

ronment is in state H±. This particular form of the population model leads
dynamical equations that are consistent with an accepted rate-correlation-
based plasticity rule (Miller, 1994; Pfister & Gerstner, 2006). Using log prob-
abilities would lead to models that contain exponential functions of the rate
(Veliz-Cuba et al., 2016), which are less common. In addition, since probabil-
ities can assume a finite range of values, we required that u±

t ∈ [0, 1]. Using
log probabilities would require that we use a semi-infinite range, (−∞, 0]
or that we truncate. Note also that the inputs I±t and noise dW±

t are gain-
modulated using the population rates u±

t . Gain-modulating circuits have
been identified in many sensory areas (Salinas & Abbott, 1996), and recent
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modifying equation 6.2 for the plasticity agent, so that each C±
t decays only

when the neural population of origin, u±
t , is active. Thus, we obtain the pair

of equations

dC±
t = −H(u±

t − θ )
[
C±

t

]2
.

Expressing equation 6.8 as a system of equations for the synaptic weights,
w±

t , yields

dw±
t = H(u±

t−τ − θ )
[
δ(u+

t − u−
t )− w±

t

] ·C±
t dt. (6.9)

Here the function H(
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changes in time. We assumed that the rates of transition between envi-
ronmental states are initially unknown to the observer. An ideal observer
must therefore integrate information from measurements to concurrently
estimate both the transition rates and the current state of the environment.
Importantly, these two inference processes are coupled: knowledge of the
rate allows the observer to appropriately discount older information to infer
the current state, while knowledge of transitions between states is necessary
to infer the rate.

Inference when all transition rates are identical is straightforward to
implement in resulting models. An ideal observer only needs to track the
probability of the environmental state and the total change-point count re-
gardless of the states between which the change occurred. However, when
the transition rates are asymmetric, the resulting models are more com-
plex. In this case, an ideal observer must estimate a matrix of change-point
counts, distinguished by the starting and ending states. The number of
possible matrices grows polynomially with the number of observations.
This computation is difficult to implement, and we do not suggest that
animals make inferences about environmental variability in this way. How-
ever, understanding the ideal inference process allowed us to identify its
most important features. In turn, we derived tractable approximations and
plausible neural implementations, whose performance compared well with
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to a threshold value θ over 100,000 simulations. For each value of θ , the sim-
ulation is terminated when |Ln| > θ and the choice is given by the sign of Ln.
To avoid excessively long simulations, we removed any that lasted longer
than n =
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P(Hn, an|Hn−1, an−1)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 −�t
an + α

tn−1 + β
, & : Hn = Hn−1 & an = an−1

�t
an + α − 1
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Furthermore, note that in the limit t → ∞, the O(1) terms and O(t−1) terms
vanish in equation 5.16:

dP
±
t =P

±
t

[(
g±t + 1

2

)
dt + dW±

]
+ [

Ā∓
t − Ā±

t

]
dt (A.4a)

dĀ±
t = Ā±

t

[(
g±t + 1

2

)
dt + dW±

]
+ (

Ā∓
t − Ā±

t

) (
Ā∓

t + Ā±
t

)
dt. (A.4b)

Therefore, in the event that Ā±
t → εP̄±

t in the long time limit (t → ∞), we
find the truncated system, equation A.4, becomes

dP̄±
t = P̄±

t

[(
g±t + 1

2

)
dt + dW±

]
+ ε · [P̄∓

t − P̄±
t

]
dt (A.5a)

εdP̄±
t = εP̄±

t

[(
g±t + 1

2

)
dt + dW±

]
+ ε2 · (P̄∓

t − P̄±
t

) (
P̄∓

t + P̄±
t

)
dt.

(A.5b)

Dividing by ε and noting that P̄+
t + P̄−

t = 1, equation A.5 becomes

dP̄±
t = P̄±

t

[(
g±t + 1

2

)
dt + dW±

]
+ ε · [ ¯







http://dx.doi.org/10.1037/0033-295X.113.4.700
http://dx.doi.org/10.1037/0033-295X.113.4.700
http://dx.doi.org/10.1126/science.1233912
http://dx.doi.org/10.1038/nn.2123
http://dx.doi.org/10.1162/neco.2008.20.1.91
http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038
http://dx.doi.org/10.1523/JNEUROSCI.4684-04.2005
http://dx.doi.org/10.1523/JNEUROSCI.4684-04.2005


Evidence Accumulation and Change Rate Inference 1609

Lange, A., & Dukas, R. (2009). Bayesian approximations and extensions: Optimal
decisions for small brains and possibly big ones too. Journal of Theoretical Biology,
259(3), 503–516.

Machens, C. K., Romo, R., & Brody, C. D. (2005). Flexible control of mutual inhibition:
A neural model of two-interval discrimination. Science, 307(5712), 1121–1124.

McGuire, J. T., Nassar, M. R., Gold, J. I., & Kable, J. W. (2014). Functionally dissociable
influences on learning rate in a dynamic environment. Neuron, 84(4), 870–881.

McMillen, T., & Holmes, P. (2006). The dynamics of choice among multiple alterna-
tives. Journal of Mathematical Psychology, 50(1), 30–57.

Miller, K. D. (1994). A model for the development of simple cell receptive fields
and the ordered arrangement of orientation columns through activity-dependent
competition between on-and off-center inputs. J. Neurosci., 14, 409–441.

Niv, Y., Daniel, R., Geana, A., Gershman, S. J., Leong, Y. C., Radulescu, A., & Wilson,
R. C. (2015). Reinforcement learning in multidimensional environments relies on
attention mechanisms. Journal of Neuroscience, 35(21), 8145–8157.

Olberg, R., Worthington, A., & Venator, K. (2000). Prey pursuit and interception in
dragonflies. Journal of Comparative Physiology A, 186(2), 155–162.

Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt, M. L. (2011).
Posterior cingulate cortex: Adapting behavior to a changing world. Trends in
Cognitive Sciences, 15(4), 143–151.

Petit, O., Gautrais, J., Leca, J. B., Theraulaz, G., & Deneubourg, J. L. (2009). Collective
decision-making in white-faced capuchin monkeys. Proceedings of the Royal Society
of London B: Biological Sciences, 276(1672), 3495–3503.

Pfister, J. P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-
dependent plasticity. J. Neurosci., 26(38), 9673–9682.

Portugues, R., & Engert, F. (2009). The neural basis of visual behaviors in the larval
zebrafish. Current Opinion in Neurobiology, 19(6), 644–647.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for
two-choice decision tasks. Neural Computation, 20(4), 873–922.

Redner, S. (2001). A guide to first-passage processes. Cambridge: Cambridge University
Press.

Salinas, E., & Abbott, L. (1996). A model of multiplicative neural responses in parietal
cortex. Proceedings of the National Academy of Sciences, 93(21), 11,956–11,961.

Shvartsman, M., Srivastava, V., & Cohen, J. D. (2015). A theory of decision making
under dynamic context. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, &
R. Garnett (Eds.), Advances in neural information processing systems, 19 (pp. 2476–
2484). Red Hook, NY: Curran.

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions.
Trends Neurosci., 27(3), 161–168. doi:10.1016/j.tins.2004.01.006

Socha, L. (2007). Linearization methods for stochastic dynamic systems. New York:
Springer Science & Business Media.

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the
representation of value in the parietal cortex. Science, 304(5678), 1782–1787.

Veliz-Cuba, A., Kilpatrick, Z. P., & Josić, K. (2016). Stochastic models of evidence
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