Program in Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2009

Notice. Do four of the following ve problems. Place an X on the line	1
opposite the number of the problem that you are NOT submitting for	2
grading. Please do not write your name anywhere on this exam. You	3
will be identi ed only by your student number, given below and on	4.
each page submitted for grading.	5
Show all relevant work!	TOTAL.

STUDENT NUMBER: _

- 1. Imagine rolling an unbiased die repeatedly and let T_k be the number of rolls until some number appears repeated k times in a row. For example, if the rst few rolls of the die were 6;4;5;5;5;4;::: then $T_1 = 1$, $T_2 = 4$, and $T_3 = 5$. (Note that T_1 is always 1.) Find a formula that relates $E(T_k)$ to $E(T_{k-1})$ and use it to determine $E(T_k)$ explicitly for all $k \ge 1$.
- 2. This problem has two separate parts.
 - (a) (*Markov's inequality.*) Show that $a^2 \cdot P[|X| \ge a] \le E(X^2)$, for any random variable X and real-constant a > 0.
 - (b) Consider random variables T_1 ; T_2 ; T_3 ; \ldots i.i.d. Exponential(1) i.e. each has probability density function $f(t) = e^{-t}$, for $t \ge 0$. Consider a certain continuous function g: \mathfrak{g}

(c) Motivated by part (b) consider the random variable

$$Z := \begin{array}{ccc} Y = (1 -)^{1=n} & ; & Y \leq (1 -)^{1=n}; \\ Y & ; & Y > (1 -)^{1=n}: \end{array}$$

Show that Z is a lower-bound for with a condence of <u>at least</u> 100(1 -)%.

- 4. Let $0 be an unknown parameter and consider a random sample <math>(X_1; X_2)$ such that $P[X_1 = k_1; X_2 = k_2] = p^2 \cdot (1 p)^{k_1 + k_2}$, for $k_1; k_2 \ge 0$ integers. In what follows we will say that a real-valued function g(p) is *good* if there are constants $_{0; 1; 2}; ...$ such that $g(p) = p \int_{k=0}^{1} k \cdot (1 p)^k$, for all 0 .
 - (a) Show that if g(p) is a good function and $_{0; 1; 2}$ are like above then $_{X_1}$ is an unbiased statistic for g(p).
 - (b) Find a UMVUE based on $(X_1; X_2)$ for any good function g(p).
 - (c) Find the UMVUE based on (X_1, X_2) for g(p) = p(1 + p).
- 5. Consider a eet of *N* buses each of which breaks down independently of the others at a rate . When a bus brakes down, it is sent for repair to a depot. The mechanic of the depot can only repair one bus at a time and the repair time is always an exponential random variable with mean 1 = .
 - (a) Determine the equilibrium distribution of the number of buses in the repair depot (i.e. undergoing repair or waiting to be repaired).
 - (b) If at a given moment all buses are functional, what is the probability that in the next *t* units of time no bus will break down? Determine this probability explicitly.
 - (c) Assume that N = 1. If at a given moment all buses are functional, what is the probability that *t* units of time later no bus will be in the repair depot? Determine this probability explicitly.