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Abstract Mammalian spatial navigation systems utilize
several different sensory information channels. This infor-
mation is converted into a neural code that represents the
animal’s current position in space by engaging place cell,
grid cell, and head direction cell networks. In particular, sen-
sory landmark (allothetic) cues can be utilized in concert
with an animal’s knowledge of its own velocity (idiothetic)
cues to generate a more accurate representation of position
than path integration provides on its own (Battaglia et al.
The Journal of Neuroscience 24(19):4541–4550 (2004)).
We develop a computational model that merges path integra-
tion with feedback from external sensory cues that provide
a reliable representation of spatial position along an annu-
lar track. Starting with a continuous bump attractor model,
we explore the impact of synaptic spatial asymmetry and
heterogeneity, which disrupt the position code of the path
integration process. We use asymptotic analysis to reduce
the bump attractor model to a single scalar equation whose
potential represents the impact of asymmetry and hetero-
geneity. Such imperfections cause errors to build up when
the network performs path integration, but these errors can
be corrected by an external control signal representing the
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imperfect summation of velocity inputs (Brody et al. 2003).
Any inaccuracy in the represented position or velocity will
be compounded over time, as the neural code continues to
trace the animal’s true path (Knierim et al. 1995; Valerio
and Taube 2012). Fortunately, path integration is not the sole
navigational technique of the mammalian brain; landmarks
detected by the sensory system help anchor and correct the
integrated velocity signal (Fig. 1a) (Etienne et al. 1996;
Collett and Graham 2004; Solstad et al. 2008).

Several experiments have demonstrated that mammals’
representation of space is sharpened in the presence of sen-
sory cues (Battaglia et al. 2004; Ulanovsky and Moss 2011;
Aikath et al. 2014; Zhang et al. 2014). Experiments typically
compare place fields of individuals cells - spatial locations
where the cell becomes active - in the presence and absence
of sensory landmarks (e.g., steel brush or ticking clock;
Fig. 1b). For instance, Battaglia et al. (2004) recorded from
hippocampal place cells in rats moving on an annular track.
When there were no sensory cues along the track, the mea-
sured place field of an individual cell could differ substan-
tially, depending on whether the rat was moving clockwise
or counterclockwise around the annulus. This suggests there
was some drift in animals’ neural representation of their
position. However, when several position cues were placed
along the track, the clockwise and counterclockwise place
fields of individual cells were strongly correlated. This sug-
gests the sensory cues tightened the navigation system’s fine
representation of the animal’s spatial position (Save et al.
2000). Similar effects have been observed in brown bats,
whose echolocation signals provide a brief burst of rich
sensory information, sharpening the animal’s place fields
(Ulanovsky and Moss
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balance of excitation and inhibition. A similar mechanism
was utilized by Burak and Fiete (2009) in a two-dimensional
model of grid cell activity. Thus, this framework is a well
accepted model of position encoding cells in hippocampus,
entorhinal cortex, and the vestibular system (Zhang 1996).
Since we are modeling motion along an annulus (Fig. 1b),
we have restricted the network to a one-dimensional peri-
odic domain. Sensory cues are assumed to provide a reliable
estimate of the animal’s true position. This position is then
compared with the place cell network’s estimate of position.
Any discrepancy in the position estimate is then translated
into a corrective velocity input, which is added to the base-
line velocity input (Fig. 1a). Even when the cues occur
discretely in space, this mechanism works well for reducing
the long term error in the position estimate.

In Section 2, we introduce the neural field model of
spatial navigation, which combines path integration and
sensory cue feedback. Next, we derive a low-dimensional
approximation for the dynamics of bump position in the
neural field model (Section 3). This reduction reveals the
relative influence of velocity inputs, sensory feedback, and
heterogeneity on the animal’s perceived position of its cur-
rent location. Ultimately, this allows us to calculate the
impact of various control strategies on the error between the
animal’s perceived position and true position (Section 4).
Our main finding is that there is an optimal control strength
at which the long term error of the network is minimized.
Our findings were similar in the case that errors arose due
to dynamic noise fluctuations (Section 4.2), rather than
synaptic heterogeneities (Section 4.1). In this case, the low-
dimensional approximation of the neural field is a stochas-
tic differential equation whose variance we can evaluate
explicitly.

2 Sensory control in velocity-integrating place cell
networks

We employ a neural field model of velocity integration that
sustains a bump attractor of neural activity in the absence
of any inputs. Amari (1977) pioneered the scalar neu-
ral field model as a reduction of the excitatory-inhibitory
model of Wilson and Cowan (1973), but the incorpora-
tion of velocity inputs that shift the bump around the
spatial domain is more recent. Originally developed as a
model of the head direction system (Zhang 1996), velocity-
integrating networks introduce an external input that alters
the shape of the recurrent architecture (McNaughton et al.
1991). As a result, a moving bump, rather than a sta-
tionary bump, becomes the stable solution to the model
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Fig. 2 Velocity-integration with moving bump attractors in the neu-
ral field model Eq. (2.1) with a Heaviside firing rate function Eq. (2.8)
with threshold 	 = 0 and a cosine base weight function w0(x) =
cos(x) . a Bump of neural activity u(x, t) perfectly integrates velocity
inputs in the case of no heterogeneity (� = 0) and no noise (� = 0),
showing the animal’s true position (solid line) is perfectly tracked by
the center of mass of the bump (dashed). b In a heterogeneous network
(� = 0.1 with wu = sin(x)), the bump initially moves too fast due to

a discrete attractor of the input-free system at x = �/ 2, so the bump’s
center of mass is mismatched with the true position of the animal. c
In the presence of spatiotemporal noise (� = 0.2 with cosine correla-
tions C(x) = cos(x)), the bump wanders diffusively so the encoded
position tends to slowly distance itself from the true position. Here the
external velocity input is constant ṽ(t) = 0.1. Numerical simulations
are performed using an Euler timestep with dt = 0.1 and a trapezoidal
rule on the integral with dx ≈ 0.003

Thus, assuming a sensory mechanism for correcting the
place cell’s encoded position when a cue is encountered,
take the velocity input to be

ṽ(t) := v(t) + vc(t),

the sum of the animal’s true velocity v(t) and an exter-
nal control signal vc(t) . This is meant to account for the
improved place representation observed when animals can
employ information about sensory landmarks (Battaglia
et al. 2004; Ulanovsky and Moss 2011; Aikath et al. 2014).
As shown in the schematic in Fig. 1a, we assume there is a
network that can access the place cell network’s perceived
position 
(t) via a readout of the center of mass of neural
activity (Deneve et al. 1999)


(t) =
� �

−�
xf (u(x, t)) dx. (2.4)

The present positional error is then computed by comparing
the perceived position 
(t) to the animal’s actual position
given by a time integral of the velocity input


 T (t) =
� t

0
v(s)ds,

so the error

r(t) = 
 T (t) − 
(t), (2.5)

which will be positive (negative) if the estimated position is
to the left (right) of the true position. Note, we extend the
domain x ∈ [−�, � ] to compute Eq. (2.5) in cases where the
closest distance between 
 T and 
 is across the boundary
cuts at x = ±� . The error r(t) is then translated either into
a continuous velocity control signal

vc(t) = �r(t) = � · (
 T (t) − 
(t)), (2.6)

or a discrete control signal given by

dvc

dt
= −vc(t)

�
+ �

Nc�

k=1

r(tk)
(t − tk), (2.7)

where sensory cues occur at times tk and � and � determine
the strength and time decay of control. As we will show, in
the case of continuous control Eq. (2.6), strengthening the
sensory feedback � always leads to a reduction of the error.
This is not the case for discrete control Eq. (2.7), since the
previous sensory cue at tk < t becomes less relevant as t
increases toward tk+1. One of the main goals of this study is
to explore how the spacing between subsequent cues tk+1 −
tk determines how strong � the control signal should be.

The nonlinearity f is a firing rate function taken to be
sigmoidal (Wilson and Cowan 1973)

f (u) := 1

1 + e−� (u −	 ) ,

where � is the gain and 	 is the firing threshold. For ease in
analysis, we will often consider the high gain limit � → ∞
so that f becomes a Heaviside step function of the form

f (u) := H(u − 	 ) =
�

1 : u ≥ 	 ,
0 : u < 	.

(2.8)

Lastly, we also will consider the impact of the addi-
tive noise increment dW(x, t). Spatially extended Langevin
equations of the form Eq. (2.1) have become a common
model of the effects of fluctuations in large-scale neuronal
networks (Bressloff 2012). The noise term is a spatially
filtered spatiotemporal white noise process

dW(x, t) :=
� �

−�
F (x − y) dY (y, t)dy,

where F is the spatial filter and dY (x, t) is a spatially and
temporally white noise increment. With these definitions,
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the mean and variance can be calculated as 〈dW(x, t)〉 =
0 and 〈dW(x, t) dW(y, s)〉 = C(x − y)
(t − s)dtd
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3.1 Stationary bump solutions to the translation
symmetric network

We begin by assuming the homogeneous connectivity func-
tion w0(x) in Eq. (2.2) satisfies evenness (w
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Now plugging in our requirement that the velocity por-
tion of the weight function wv(x) = −w′

0(x) , we have

− cU′(� ) + U(� ) = −v0

� �

−�
w′

0(� − y)f (U(y))dy

+
� �

−�
w0(� − y)f (U(y))dy. (3.6)

Under the assumption that the function U(� ) satisfies the
equality Eq. (3.23.2



J Comput Neurosci

where we have applied the Eq. (3.7). We can simplify the
Eq. (3.12) further by isolating d
(t) to yield the stochastic
differential equation

d
(t) = [F (
(t)) + v(t) + vc(t) + � ] dt+dW(t), (3.13)

where the impact of synaptic spatial heterogeneities is
described by the nonlinear function

F (
) =−�


 �
−� f ′(U(x))U ′(x)


 �
−� wu(y + 
)w 0(x − y)f (U(y))dydx


 �
−� f ′(U(x))U ′(x)2dx

,

(3.14)

and the noise term has been projected to a temporal white
noise process W(t) with mean zero (〈W(t)〉 = 0) and vari-
ance 〈W(t)2〉 = Dt with associated diffusion coefficient

D = � 2


 �
−�


 �
−� f ′(U(x))U ′(x)f ′(U(y))U ′(y)C(x − y)dydx

� 
 �
−� f ′
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Fig. 4 The low-dimensional Eq. (3.13) for the bump position 
(t)
provides an accurate approximation of the bump’s movement in the
full neural field model Eq. (2.1). a Perfect integration of the constant
velocity input v(t) = 0.05 leads to a constantly drifting bump (solid
line) whose position is well approximated by the projected variable

(t) (dashed line). Inset shows the tilted potential V (
) resulting
from the constant velocity input. Circles provide corresponding loca-
tions between the two plots at t = 10, 20, 30. b Spatial heterogeneity

wu(x) = sin(x) with � = 0.1 causes bumps to drift toward local
attractors of the network. Inset shows potential with a local minimum
to which the trajectory is attracted. c Spatial heterogeneity wu(x) =
sin(6x) with � = 0.2 leads to a more rapid oscillation in the trajectory

(t) . d Spatial heterogeneity wu(x) = sin(4x)+cos(8x) with � = 0.1
leads to a less regular deviation in the trajectory 
(t) . Heaviside firing
rate function Eq. (2.8) has threshold 	 = 0. Numerical simulations are
run using the same parameters as in Fig. 2

general formulas for all equilibria of Eq. (3.22) are given by

¯
 k+ = 2k�
m

+ 1

m
sin−1 v0

�
, k = 0, ..., m − 1, (3.24)

¯
 k− = (2k + 1)�
m

− 1

m
sin−1 v0

�
, k = 0, ..., m−1. (3.25)

On the other hand, when |� | < |v0|, the heterogeneity F (
)
will not lead to pinning of bumps, so bumps will propagate

Fig. 5 Spatial heterogeneity slows and even stops the propagation of
velocity-driven bumps. a Bump position
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indefinitely in response to velocity inputs. However, the het-
erogeneity will ultimately reduce the speed of propagation
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Fig. 8 Average error 〈|r(t) |〉 as a function of time in a heterogeneous
network (wu(x) = � 1 cos(x) with control. Velocity-input is constant
v(t) = v0 = 0.05. a Numerical simulations (dashed lines) of the
neural field Eq. (2.1) are well matched by the low-dimensional approx-
imation (solid lines) given by Eq. (4.9). As demonstrated, continuous
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Fig. 9 Variance 〈
(t) 2〉 − 〈
(t) 〉2 computed for the noise-driven
network with control. Velocity-input is constant v(t) = v0 = 0.
a Numerical simulations (dashed lines) of the neural field model
Eq. (2.1) are well matched to low-dimensional approximation (solid
lines) given by Eq. (4.11). Continuous control substantially reduces
the variance, but discrete control with 
t = 4 also provide a variance

reduction. Notably, the variance saturates in the case of discrete control
as well. b Similar to the case of quenched variability through hetero-
geneity in Fig. 8, varying the strength and timescale of control alters
the long term variance. Other parameters are 	 = 0.2 and � = 0.1.
Numerical simulations are run with the same parameters as in Fig. 2
with 1000 realizations each curve

model’s position estimate. This pattern holds when errors
originate from spatial heterogeneities as well as dynamic
fluctuations.

Our analysis has focused on one-dimensional periodic
systems, wherein it is assumed the animal is navigating
along a narrow annular track (Fig. 1b). This was based
on the protocol used in the experiments of Battaglia et al.
(2004), which were used to study the effect of local cues
on the sharpness of neuronal place fields. However, there
are several studies of navigation in two-dimensional and
even three-dimensional space that demonstrate mammals’
ability to use sensory cues to perform error correction
(Geva-Sagiv et al. 2015; Solstad et al. 2008). For instance,
a recent study has demonstrated that encounters with the
boundaries of rectangular environments correct for the sys-
tematic drift in position representation (Hardcastle et al.
2015). In particular, border cells in medial entorhinal cortex
(MEC) are thought to provide inputs to position-encoding
grid cells when an animal senses an environmental bound-
ary. Such recent studies are consistent with the predictions

of planar models of spatial navigation based on the dynam-
ics of velocity-driven bump attractors (Burak and Fiete
2009; Samsonovich and McNaughton 1997). The model
we have presented here could be extended to incorporate
the effects of position-dependent cues, like boundaries, in
two-dimensional domains. We expect the extension to two-
dimensional neural field models should be possible through
a similar negative feedback control mechanism to those pre-
sented in Section 2. Our derivation of the reduced equation
would then simply yield a position variable that is two-
dimensional, with a correction term along each coordinate.

In this work, we have modeled the effects of sensory
feedback assuming the distance between an animal’s per-
ceived and actual position is relatively small. However,
there is also evidence that place cell networks can respond
to abrupt and large changes in an animal’s spatial con-
text (Wills et al. 2005
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the two possible environment representations before settling
on the new contextual representation. We could extend our
model to account for these observations by exploring the
effects of large and strong sensory feedback cues, which
could lead to such winner-take-all dynamics (Shpiro et al.
2007; Kilpatrick 2013). There is also recent experimental
evidence for discrete, rather than continuous, representa-
tions of spatial position by navigational networks. Studying
the dynamics of sharp-wave ripple events in hippocam-
pus, Pfeiffer and Foster (2015) showed that reactivation
sequences had activity reflecting discrete attractors of the
underlying network. Rather than evolving smoothly, neu-
ral activity would temporarily sharpen in the vicinity of
each position-representing attractor before transitioning to
a spatially discontiguous location. In this paradigm, theta
or gamma frequency oscillations of inhibitory input could
temporarily destabilize attractors, allowing neural activity to
traverse the network to subsequent attractors (Welday et al.
2011; Hasselmo and Brandon 2012). It would be interest-
ing to consider such modifications to our model and explore
how they impact the robustness of the spatial position code.

We also note that there is recent evidence that the posi-
tion of discrete objects in the environment may be encoded
by cells in the lateral entorhinal cortex (LEC) (Tsao et al.
2013). In particular, these cells tend to be inactive in open
environments with no spatial landmarks, but they become
active in the presence of objects that can help animals to ori-
ent themselves (Deshmukh and Knierim 2011). Some cells
in LEC, object-trace cells, have been shown to fire when
an animal encounters a location where an object was previ-
ously located, demonstrating a persistent memory of loca-
tion (Tsao et al. 2013). If in fact such cells provide inputs
to the position-encoding networks in MEC or hippocampus,
LEC object cells could provide a candidate mechanism for
the sensory feedback control we have modeled here.
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