Preliminary Exam

Partial Di[erential Equations

9:00 AM - 12:00 PM, Jan. 11, 2024
Newton Lab, ECCR 257
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There are five problems. Solve four of the five problems. Total 100

Each problem is worth 25 points.

A sheet of convenient formulae is provided.

1. Method of characteristics. Consider the inviscid Burger’s equation
U +uu, =0
on the domain Q = R x R* with initial conditions

%1 X <0,

= = — <
u(x, 0) = up(x) éo’x, 0 Tz; 1,
(a) Find the time and position at which a shock forms.
Solution: The characteristic equations are

dt
e
dat =
du

i

which gives, using the initial data (x, t,u) = (s, 0, ug(s)),

t=r,
X=ut+s,
u = Up(s).

(1)

)

©)
(4)

)
(6)

()
(8)
(9)

Thus, the solution u satisfies the implicit equation u = uy(x — ut). To find the location of

the shock, we di[erkntiate with respect to x and solve for uy, finding

Uy = Uy
14 uft’

Tihus, a characteristic emanating from the initial point

(10)



(b)

(©)

(d)

we conclude that all characteristics emanating from (0, 1) produce a shock at t; = 1. The
position of the shock for the characteristic starting at X = s [L(31, 1) can be found by
settingt =t = 1 and u = up(s) = 1 — s in Eq. (8), which gives X = (1 —s)1 +s = 1.
Therefore the shock forms at (Xs, ts) = (1, 1).

Find the subsequent trajectory of the discontinuous shock by applying the Rankine-
Hugoniot condition

S(0) = 2 (u-(0) + uL(D)

where s is the speed of the discontinuity and u..(t) = lim,_ x = U(X, t) and s = Xs(t).
Solution: Since the Burgers equation can be written as u; + (u2/2), = 0, the Rankine-
Hugoniot condition for the position of the shock Xs(t) gives

dxs _ U2 —2u?

o u—u (12)

where u. and u— are the values of u to the right and to the left of the shock, respectively.
The value to the left corresponds to characteristics emanating from X, < 0, for which
u =1, and the value to the left corresponds to characteristics emanating from xo > 1, for
which u = 0 (a rough sketch of the characteristics might be useful here). Thus, u. =0
and u— =1, and we have

dxs _ 30—321 1

o o0=1 7o (13)

Together with the initial condition Xs(1) = 1, we get Xs(t) =1+ (t — 1)/2.

Sketch the characteristics and the shock in the (x, t) plane.
Solution: A sketch is shown below.

Find the solution u(x, t).

Solution: The solution satisfies the implicit equation u = ug(Xe) = Up(X — ut). When
Xo < 0, up = 1, and so we have u = 1 along the characteristics xo = x — t for X, < 0,
provided they haven’t met the shock (blue lines in diagram). Similarly, us = 0 for xo > 0,
and so u = 0 along the characteristics xo = x for X, > 0 (purple lines). Finally, if
0 < Xo <1 we have up =1—Xp, and so u = 1 — (x — ut), which yields u = (1 —x)/(1 —1)
(green lines). Putting everything together, we obtain







3. Wave Equation. Consider the following initial-boundary value problem on the domain D =

{(x,t) : t [R",x [RI",x > t/a}, where a > 1:
Utt = Uxx, x>t/a, t >0,
u(x, 0) = (%), X >0,
ug(x,0) =g(x), x>0,
u(x,ox) = f(x), x>0,

with @, ¢, f CCF(RY).

(a) Find the solution u(x, t).
Solution: We seek a solution of the form

ux,t) =F(x—t) +G(x +t
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(b) Find su Lcieht conditions on , @, and T so that the solution is continuous in D.

Solution: We need to ensure continuity across x = t, where the two solutions meet.
Letting x — t* and using the fact that the functions involved are continuous we get

lim



(b)

Multiplying the PDE by v and integrating over the domain, we have
1
0= )v(x)Av(x) dx

3

3,
== IDEODRdx+ V(L B)v(1,6) 8

upon applying integration by parts and the boundary condition. Since the integrand is
non-negative definite and the integral is zero, we must have

| M@@)[? =0, x [BI(0,1) [¥(x)=const, x [CBIO,1).

Since the average of v(x) on the boundary is zero, v(x) must be identically zero and
uniqueness is proven.

We seek a solution using the method of separation of variables in polar coordinates. Then,
eq. (33) becomes

Upr + iur + rlzuee =0, r [(0,1), 6 [(,2n),
ur(1,8) =g(6), 6 []a,2mn].
Seeking a solution in separated form u(r,8) = f(r)g(8) implies
g"(6) + Ag(®) =0, & [(0,2m), g(0) =g(2n), g¢<(0) =g<(2m),
%) + if?r) — I:\zf(r) =0, r Q1) lim|[f(r)] <eo.
The angular boundary value problem has the trigonometric solutions
gn(6) = A, cos(nB) + B, sin(nB), n=0,1,2,....
with the corresponding eigenvalues A, = n?.
The radial problem exhibits the bounded solutions
fu(r) =r".
Introduce the series solution
u(r,8) = A + %n cos(nB) + B, sin(n0)].

n=1

The coe Lciehts are determined by the boundary conditions

P_1
ur(1,8) = n[A, cos(nB) + B, sin(nB)] = g(8), 6 L[]0, 2m].

n=1

Multiplying by cos(m6) and integrating from 0 to 2m, we obtain

1 bn
An=— g(@)cos(mb)ds, m=1,2,....

mm o
Multiplying by sin(m@) and integrating from 0 to 2m, we obtain
B L ) si 8) dd 1,2
m= g(®)sin(m6)dé, m=1,2,...,

which determines a series representation of the solution. To determine Ay, we require zero
average on the boundary so that Aq = 0.



(c) Inserting the expressions for the coe [ciehts into the series representation, we obtain

gy O =
u(r,0) = i g(e) cos(ng) cos(nb) + sin(ng) sin(nb) dg

n=1

T

o

= @t T cos(n(e — 8)) do

0 m._, N
3,

=, g(@)N(r, 06 — @) do.



where a is a constant and the dot and prime indicate time and space derivatives, respec-
tively. If a = 0, the spatial equation gives X = A + BXx, which upon evaluation of the
boundary conditions leads to X = 0. Similarly, if a > 0 we get X = Ae ® + Be™ &,
leading also to X = 0. Therefore, a must be negative and we set a = —A%. We obtain

T (t) = T(0) exp(—A?t), (42)
X (x) = Asin(Ax) + B cos(AX). (43)

Using the boundary conditions X (0) = X (1) = 0 we obtain B = 0 and A = nrt, so we get
the modes

Xn(X) = sin(AnX), (44)
where A, = nm and n [CNI*. Thus, we find
., .
x, t;s) =  Ane tsin(Anx). (45)
n=1
Using the initial conditions TG(x, t;s) = f(x)e™® we get
., .
f(x)es=  Ane MSsin(A.X), (46)
n=1

which implies that A, = f,e®~Ds where f, is the nth sine Fourier coe Lcieht of f(X).

Therefore,
f(x, t;s) = fnebﬁ‘l)se‘A%t Sin(AnX). (47)
n=1
and
L Y N ,
u(x,t) =  T(x, t;s)ds = fePnDse At sin(\,x)ds (48)
0 n=1
1 Ly
= f.e Mtsin(\nx) ePhDsgs (49)
n=1 0
) — e(\a—Ds
— =Nt i
= . fae7 't sin(AnX) N1 @ (50)
1, . eM3—1t _ 1
=  f.e Antsm()\nx)ﬁ (51)
n=1 n
1 et — ARt
= fnsSin(ANX) ———— 52

(b) Prove that the solution is unique.

Solution: Assume there are two solutions, u; and u,. Then their di [ertence w = u; — u,
satisfies

Wi = Wiy, 0<x<l1, t>0, (53)
w(x,0) =0, 0<x<l, (54)
w(0,t) =u(1,t) =0 t>0. (55)



Let T > 0. By the maximum principle, the maximum of w in the closure of Uy =
[0,1] < [0, T) must be equal to the maximum of w in its parabolic boundary, Ut — Uy,
which is zero. Therefore w < 0, or equivalently u; < u, in Ur. Applying the same
argument to —w we conclude that w = u; —u, = 0 in Ur. Since T was arbitrary,
ui(Xx,t) = ux(x,t) for all t > 0, x (0, 1), so the solution is unique.
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