(b) Using 2 2 matrices, construct an example where the product of two real symmetric matrices does not have real eigenvalues.

Problem 4. Interpolation / Approximation

Let function $f = C^{n-1}[a,b]$, $|f^{(n-1)}(x)| = M$ and $E_n(f)$ be the error of its best approximation by a polynomial of degree *n*. Show that the accuracy of the best polynomial approximation improves rapidly as the size of the interval [a,b] shrinks, i.e., show that

$$E_n(f) = \frac{2M}{(n-1)!} \frac{b-a}{4}^{n-1}.$$

Hint: Use the Chebyshev nodes $x = \frac{1}{2}(b = a) = \frac{1}{2}(b = a)\cos \frac{\pi 2}{2n+1}$ to construct a polynomial approximation of *f*.

Problem 5. Numerical ODE