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become variable. This is because the rise and decay of the adaptation variable is now
stochastically-driven, leading to a distribution of transition times. Interestingly, com-
mon noise in the adaptation variable can lead to a correlation of two distinct slow
oscillating populations. This effect is still significant in the event that each population
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tions between the quiescent and active state (Parga and Abbott 2007; Bressloff 2010;
Litwin-Kumar and Doiron 2012). Alternatively, switches between low and high activ-
ity states may arise by some underlying systematic slow process. For instance, it has
been shown that competition between recurrent excitation and the negative feedback
produced by activity-dependent synaptic depression can lead to slow oscillations in fir-
ing rate whose timescale is set by the depression timescale (Bart et al. 2005; Holcman
and Tsodyks 2006; Kilpatrick and Bressloff 2010). Excitatory-inhibitory networks
with facilitation can produce slow oscillations, due to the slow facilitation of feedback
inhibition that terminates the up state, the down state is then rekindled due to positive
feedback from recurrent excitation (Melamed et al. 2008). These neural mechanisms
utilize dynamic changes in the strength of neural architecture. However, Compte et al.
(2003) proposed that single cell mechanisms can also shift network states between up
and down states. The up state is maintained by strong recurrent excitation balanced
by inhibition, and transitions to the down state occur due to a slow hyperpolarizing
current. Once in the down state, the slow hyperpolarizing current is inactivated, and
excitation reinitiates the up state. Slow hyperpolarizing currents are prime examples of
mechanisms underlying spike rate adaptation (Benda and Herz 2003). One particularly
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While the synchronous initiation of up states may be explained by recurrent architec-
ture, synchronization of the down states are more difficult to explain and remain an
unexplained phenomenon (Volgushev et al. 2006). The fact that the onset of quies-
cence is fast and well synchronized means there must be either a rapid relay signal
between all foci or there is some global signal cueing the down state. Rather than
suggest a disynaptic relay, using long range excitation acting on local inhibition, we
suggest that background noise can serve as a synchronizing global signal (Ermentrout
et al. 2008). For example, up/down state correlations in visual cortex have also been
observed across 500µm, and it has been suggested this may arise due to common
input from LGN (Lampl et al. 1999). Noisy but correlated inputs have been shown
to be capable of synchronizing uncoupled populations of phase oscillators (Teramae
and Tanaka 2004) as well as experimentally recorded cells in vitro (Galán et al. 2006).
Here we will show correlated noise is a viable mechanisms for coordinating slow
oscillations in distinct uncoupled neural populations.

The paper is organized as follows: We introduce the neural population model in
Sect. 2, indicating the way external noise is incorporated into the model. In Sect. 3, we
demonstrate the periodic solutions that emerge in the noise-free model, demonstrating
it is possible to derive analytical expressions for the oscillation period in the case of
steep firing rate functions. Then, in Sect. 4 we show how to derive phase sensitivity
functions that describe how external perturbations to the periodic solution impact the
asymptotic phase of the oscillation. As demonstrated, the impact of perturbations to
the adaptation variable is much stronger than activity variable perturbations, especially
for longer adaptation timescales. Thus, our studies of the impact of noise mainly focus
on the effects of fluctuations in the adaptation variable. We find, in Sect. 5, that adding
noise to the adaptation variable leads to up and down state durations that are shorter and
more balanced, so that the up and down state last for similar lengths of time. In Sect. 6,
we demonstrate that slow oscillations in distinct populations can become entrained to
one another when both populations are forced by the same common noise signal. This
phenomenon is robust to the introduction of independent noise in each population,
as we show in Sect. 7. Lastly, we demonstrate that the rate and spike patterns of two
uncoupled spiking networks can be synchronized by common noise in Sect. 8.

2 Adaptive neural populations: deterministic and stochastic models

We begin by describing the models we will use to explore the impact of external
perturbations on slow oscillations. Motivated by Compte et al. (2003), we will focus on
a neural population model with spike rate adaptation, akin to mutual inhibitory models ).
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Here, u represents the mean firing rate of the neural population with excitatory connec-
tion strength α. The negative feedback variable a is spike frequency adaptation with
strength φ and time constant τ . For some of our analysis we will utilize the assumption
τ � 1, based on the fact that many forms of spike rate adaptation tend to be much
slower than neural membrane time constants (Benda and Herz 2003). The constant
tonic drive I initiates the high firing rate (up) state, and slow adaptation eventually
attenuates activity to a low firing rate (down) state. Weak but positive drive I > 0 is
meant to model the presence of low spiking threshold cells that spontaneously fire,
utilized as a mechanism for initiating the up state in Compte et al. (2003). The firing
rate function f is monotone and saturating function such as the sigmoid

f (x) = 1

1 + e−γ x
. (2)

Commonly, in studies of neural field models, the high gain limit (γ → ∞) of Eq. (2) is
taken to yield the Heaviside firing rate function (Amari 1977; Laing and Chow 2002)

H(x) =
{

1 : x ≥ 0,

0 : x < 0,
(3)

which often allows for a more straightforward analytical study of model dynamics.
We exploit this fact extensively in our study. Nonetheless, we have also carried out
many numerical simulations of the model for a smooth firing rate function Eq. (2),
and they correspond to the results we present for sufficiently high gain. Note, this
form of adaptation is often referred to as subtractive negative feedback, as current is
subtracted from the population input. Alternative models of slow neural population
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〈ξa(t)2〉 = σ 2
a t . Extending our results concerning the phase response curve, we will

explore how noise forcing impacts the statistics of the resulting stochastic oscillations
in Eq. (4). In particular, since we find noise tends to impact the phase of the oscillation
more strongly when applied to the adaptation variable, we will tend to focus on the
case ξu ≡ 0.

Stochastic dual population model Finally, we will focus on how correlations in
noise-forcing impact the coherence of two distinct uncoupled populations

du1 = [−u1(t) + f (αu1(t) − a1(t) + I )] dt + dξu (5a)

da1 = [−a1(t) + φu1(t)] dt/τ + dξa (5b)

du2
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Fig. 1
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Since ū is monotone increasing, then ū −g(ū) is monotone increasing. Further, noting
limū→±∞ [ū − g(ū)] = ±∞, it is clear ū − g(ū) crosses zero once, so Eq. (7) has a
single root when φ > α. Stability of this equilibrium is given by the eigenvalues of
the associated Jacobian

J (ū, ā) =
(
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Fig. 2
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T1 of the adaptation variable a increases monotonically with input

dT1

dI
= τα

(φ − I )(φ − α − I )
> 0,

when 0 < I < (φ − α). Furthermore, the decay time T2 of the adaptation variable a
decreases monotonically with input

dT2

dI
= − τα

I (I + α)
< 0,

when 0 < I < (φ−α). Thus, as I → 0+, the slow oscillation’s period T is dominated
by very long decay times T2 � 1 and as I → (φ − α)−, it is dominated by very long
rise times T1 � 1. We can identify the minimal period as a function of the input I by
finding the critical point of T (I ). To do so, we differentiate and simplify

dT

dI
= − ταφ(2I − (φ − α))

I (I + α)(φ − I )(φ − α − I )
,

so the critical point of T (I ) is at Icri t = (φ −α)/2, which corresponds to the minimal
value of the period Tmin(I ) = 2τ ln [(φ + α)/(φ − α)] as pictured in Fig. 2b.

4 Phase response curves

We can further understand the dynamics of the slow oscillations in Eq. (1) by comput-
ing phase response curves for both the case of a sigmoidal firing rate Eq. (2) and the
Heaviside firing rate Eq. (3). As we will show, perturbations of the activity variable u
have decreasing impact as the timescale of adaptation τ and the gain γ of the firing
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Fig. 3 a, b, c Periodic solution (u, a) and d, e, f phase sensitivity function (Zu , Za) of Eq. (1) plotted as a
function of phase θ = t/T for a sigmoidal firing rate function Eq. (2). a, d For shorter adaptation timescale
τ = 10 and input I = 0.2, the activity variable u has a more rounded trajectory, so perturbations to activity
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phase advance and phase delay region of the adaptation phase response (Za) for larger
timescales τ .

In addition to a general formula for the phase sensitivity functions (Zu(t), Za(t)),
we can derive an amplitude-dependent formula for the response of limit cycle solu-
tions (u0(t), a0(t)) of Eq. (1) with a Heaviside firing rate Eq. (3), assuming τ � 1. In
this case, we utilize the formula for the period Eq. (14) and limit cycle Eq. (15),
derived using a separation of timescales assumption. Then, we can compute the
change to the variables (u, a) as a result of a perturbation (δu, δa), which we denote

(u0(t), a0(t))
(δu ,δa)
−→ (ũ0(t), ã0(t)). We are primarily interested in how the relative

time in the limit cycle is altered by a perturbation δu - how much closer or further the
limit cycle is to the end of the period T after being perturbed. We can readily determine
this by first inverting the formula we have for (u0(t), a0(t)), given by Eq. (15), to see
how this value determines the time t0 along the limit cycle

t0(u0, a0) =
{

τ ln [(φ − I )/(φ − a0)] : u0 = 1,

τ ln [(φ − I )(I + α)/a0/(φ − α − I )] : u0 = 0.
(18)

Using this formula, we can now map the value (ũ0, ã0) to an associated updated relative
time t0 along the oscillation.

Here, we decompose the impact of perturbations to the u and a variables. We begin
by studying the impact of perturbations δu to the activity variable u. We can directly
compute

ũ0(t) = H(I + α [u0(t) + δu] − a0(t)).

Thus, the singular system Eq. (13) will be unaffected by such perturbations if sgn(I +
α[u + δu] − a) = sgn(I + αu − a). This is related to the flatness of the susceptibility
function Zu over much of the time domain in Fig. 3d–f. However, if sgn(I + α[u +
δu] − a) �= sgn(I + αu − a), then ũ0(t) = 1 − u0(t), as detailed in the following
piecewise smooth map:

u0(t) = 0 
→ ũ0(t) = 1 : δu > −(I − a0(t))/α > 0,

u0(t) = 0 
→ ũ0(t)
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Fig. 4 Phase response curves of the fast–slow timescale separated system τ � 1. a, b Amplitude δu -
and δa -dependent phase response curves Gu(θ, δu) and Ga(θ, δu) characterizing phase advances/delays
resulting from perturbation of neural activity u and adaptation a. We compare analytical formulae (solid
lines) to numerically computed PRCs (dashed lines). c
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so t̃0 = T − tw with tw = τ ln [(a0 + δ0)/I ], but if a0(t) + δa < I , so that it is
necessary that δa < 0, then

ũ0(t) = 1, ã0(t) = (I + α)e−(t−T1)/τ + δa . (23)

In the case of Eq. (
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Fig. 5 Noise alters the duration of up and down states. a Numerical simulation of the stochastically driven
population model Eq. (4) demonstrates up and down state durations (e.g., T1 and T2) are variable when
driven by adaption noise ξa with 〈ξ2

a 〉 = σ 2
a t , σa = 0.01. Switches are determined by the threshold

crossings of the adaptation variable a(t) = I and a(t) = I + α. b Up/down states become more variable
when the noise amplitude σa = 0.02. c Mean durations of the up and down state, 〈T1〉 and 〈T2〉, decrease
as a function noise amplitude σa . d Impact of noise σa on the balance of up to down state durations T̄1/T̄2
as input I is varied. Firing rate is given by the Heaviside function Eq. (3). Other parameters are α = 0.5,
φ = 1, and τ = 50

which is the well-known threshold crossing problem for an Ornstein-Uhlenbeck
process (Gardiner 2004). The mean T̄1 of the passage time distribution is thus given
by defining the potential V (a) = a2

2τ
− φa

τ
and computing the integral

T̄1 = 1

σ 2
a

∫ I+α

I

∫ x

−∞
e[
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Fig. 6 Noise reshapes the distributions of (a) up and (b) down state durations. As the level of noise σa is
increased, the intrinsic period of the deterministic oscillation is masked by the predominance of durations
punctuated by noise-driven transitions. This results in an exponentially decaying distribution, rather than a
peaked distribution, for large noise levels σa . Firing rate is given by the Heaviside function Eq. (3). Other
parameters are I = 0.2, α = 0.5, φ = 1, and τ = 50

experimental papers exploring the statistics of up and down states (Isomura et al. 2006;
Sanchez-Vives and McCormick 2000; Steriade et al. 1993; Cunningham et al. 2006).

6 Synchronizing two uncoupled populations

Now, we demonstrate that common noise can synchronize the up and down states of
two distinct and uncoupled populations. We begin with the case of identical noise and
then, in Sect. 7, relax these assumptions to show that some level of coherence is still
possible when each population has an intrinsic and an independent source of noise.
This is motivated by the observation that the SDE derived in the large system-size
limit of a neural master equation tends to possess intrinsic noise in each population,
in addition to an extrinsic common noise term (Bressloff and Lai 2011). As we will
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Fig. 8 Slow oscillations in
Eq. (5) can also be synchronized
via common noise to the neural
activity variables u j

(〈ξ2
u 〉 = ε2t). Lyapunov

exponent λ decreases as a
function of the adaptation
timescale τ , for I = 0.
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Fig. 9 Stationary density M0(ψ) of the phase difference ψ = θ1 − θ2 for two slowly oscillating neural
population driven by both common and independent noise Eq. (6). As the degree of noise correlation is
decreased from (a) χa = 0.95 to (b) χa = 0.90, the density spreads, but there is still a peak at ψ = 0,
the phase-locked state. We focus on noise in the adaptation variable, so σu = 0 and σa = 0.01. Other
parameters are α = 0.5, γ = 15, φ = 1, and τ = 20

each of the neural populations. We demonstrate here that oscillation phases of stochas-
tically driven populations still remain relatively close in this case (Fig. 9). Independent
noise is incorporated into the modified model Eq. (6). Since there is a periodic solution
to the noise-free version of this system, phase-reduction methods can be used to obtain
approximate SDEs for the phase variables (Nakao et al. 2007)

dθ1 = ωdt + Z(θ1(t)) · [
dξ c(t) + dξ1(t)

]
, (32a)

dθ2 = ωdt + Z(θ2(t)) · [
dξ c(t) + dξ
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Fig. 10 Slow oscillations in an excitatory-inhibitory spiking network of Ne = 80 excitatory cells and
Ni = 20 inhibitory cells. a The voltage ve

j of two randomly selected excitatory cells shows that periods of
quiescence and activity alternate synchronously. b Up and down state transitions are apparent in the spike
raster plot of all the excitatory cells. c Average spike rates of the excitatory populations similarly show the
slow switching between the two stable states of the system: a low and a high firing rate state. Parameters
are Ie = 1.05, Ii = 0.95, gq = 0.8/τq , τse = 40ms, τsi = 30ms, τq = 500ms, Ḡee = 0.4/Ne ,
Ḡei = 0.32/Ni , Ḡie = 0.15/Ne , Ḡii = 0.01/Ni , σe = σi = σq = 0.01. Numerical simulations of
Eq. (34) employ the Euler–Maruyama method with a timestep dt = 10−6 s

where G AB
jk is the connectivity matrix, τsB is the decay time constant of the synapses

from population B, t B
l is the lth spike time of neuron l in population B. Note that

excitatory couplings Gee
kl and Gie

kl are non-negative and inhibitory couplings Gie
kl and

Gii
kl are non-positive. Lastly, both cell voltage and hyperpolarizing currents are subject

to white noise processes ξ(t) with zero mean and variance 〈ξAj (t)2〉 = σ 2
Aj t for

A = {e, i, q}.
The recurrent excitatory connectivity of Eq. (34) generates a bistable network.

Sufficiently high spike rates will be sustained, due to repeated reactivation of excitatory
cells, but low spike rates do not engender persistent high spike rates. Transitions
between these two states are generated by the slow build up and decay of the slow
hyperpolarizing currents of the excitatory cells. We demonstrate the ability of the
network Eq. (34) to generate synchronous up and down state transitions in Fig. 10.
Single cells tend to occupy either a depolarized or hyperpolarized state, where they
spike repeatedly or are quiescent (Fig. 10
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Fig. 11 Noise-induced correlation of the spike pattern of two uncoupled excitatory-inhibitory networks
Eq. (34) with adaptation. Noise to all adaptation variables σq = 0.001 in both populations is fully correlated.
a Excitatory population-wide spike rates of the first (solid line) and second (dashed line) networks become
more correlated over time. Up and down transitions begin to occur more coherently at later times. b
Correlation coefficient (CC) associated with the spike trains of network 1 as compared to those of network
2, averaged across all possible pairings. The CC for the later time window [3, 6]s (solid line) is larger than
that for the earlier time window [0, 3]s (dashed line), demonstrating the noise-induced increase in activity
correlation between the two uncoupled networks. Other parameters and methods are the same as in Fig. 10

Each network’s state is initialized randomly, by selecting a random time point in the
simulation presented in Fig. 10, so that both networks are in a randomly chosen phase
of an evolving slow oscillation. Noise to the voltage variables vB A

j of each network is

taken to be uncorrelated, but noise to the adaptation variables q B
j is taken to be fully

correlated so that each variable receives an identical white noise sample. As a result,
the spike and rate patterns of these two uncoupled networks become more correlated
over time (Fig. 11a). We quantify the effect on spike correlation by digitizing all spike
times of each network’s excitatory population into 10ms bins and then use MATLAB’s
xcorr function to compute an unnormalized correlation function between network
1 and network 2. This is then normalized by dividing by the geometric mean

√
ν jνk

of both neuron’s total firing rate ν j and νk over the time interval. The time interval
[0, 3]s is compared to [3, 6]s in Fig. 11b, demonstrating the correlation coefficient
increases at later times. Thus, common noise in the slow hyperpolarizing currents
can help to correlate the temporal evolution of firing rate and spiking in this spiking
network model.

9 Discussion

We have studied the impact of deterministic and stochastic perturbations to a neural
population model of slow oscillations. The model was comprised of a single recur-
rently coupled excitatory population with negative feedback from a slow adaptive
current (Laing and Chow 2002; Jayasuriya and Kilpatrick 2012). By examining the
phase sensitivity function (Zu, Za), we found that perturbations of the adaptation
variable lead to much larger changes in oscillation phase than perturbations of neural
activity. Furthermore, this effect becomes more pronounced as the timescale τ of adap-
tation is increased. Introducing noise in the model decreases the oscillation period and

123
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helps to balance the mean duration of the oscillation’s up and down states. When
two uncoupled populations receive common noise, their oscillation phases θ1 and θ2
eventually become synchronized, which can be shown by deriving a formula for the
Lyapunov exponent of the absorbing state θ1 ≡ θ2 (Teramae and Tanaka 2004). When
independent noise is introduced to each population, in addition to common noise, the
long-term state of the system is described by a probability density for ψ = θ1 − θ2,
which peaks at ψ ≡ 0.

Our study was motivated by the observation that recurrent cortical networks can
spontaneously generate stochastic oscillations between up and down states. Guided
by previous work in spiking models (Compte et al. 2003), we explored a rate model of
a recurrent excitatory network with slow spike frequency adaptation. We expect that
we would have obtained similar results from an excitatory-inhibitory network, since
inhibition tends to act faster than excitation, essentially reducing the effective recurrent
excitatory strength (Pinto and Ermentrout 2001). One of the open questions about up
and down state transitions concerns the degree to which they are generated by noise
or by more deterministic mechanisms, such as slow currents or short term plasticity
(Cossart et al. 2003). Here, we have provided some characteristic features that emerge
as the level of noise responsible for transitions is increased. Similar questions have
been explored in the context of models of perceptual rivalry (Moreno-Bote et al. 2007).
In addition, we have provided a plausible mechanism whereby the onset of up and
down states could be synchronized in distinct networks (Volgushev et al. 2006).

Nonmonotonic residence time distributions for up states provide compelling evi-
dence for the theory that switches from up to down states are partially governed by
deterministic neural processes (Cheng-yu et al. 2009). This idea is explored in detail in
a recent study which employed a neuronal network model with short term depression
(Dao Duc et al. 2015). Recordings presented therein from both auditory and barrel
cortices revealed up state duration distributions which are peaked away from zero.
Furthermore, the tail of the duration distribution has an oscillatory decay with several
peaks, which may arise due to specific properties of the underlying network’s dynam-
ics. Indeed, the authors were able to account for these peaks in a neuronal network
model with an up state whose attracting trajectories are oscillatory. It would interesting
to extend the present study to try and understand how external inputs might entrain
such up and down state transitions that occur via more complex dynamics.

Synchronizing up and down states across multiple areas of the brain may be
particularly important for memory consolidation processes (Diekelmann and Born
2010). Long term potentiation (LTP), the process by which the strength of synapses
is strengthened for a lasting period of time (Alberini 2009), is one of the chief mech-
anisms thought to underlie memory formation (Takeuchi et al. 2014). Both cortical
and hippocampal LTP are typically restricted to the up states of slow oscillations dur-
ing slow wave sleep (Rosanova and Ulrich 2005). Furthermore, up states may then
repetitively activate memory traces in hippocampus, along with thalamus and cor-
tex, reenforcing memory persistence (Marshall and Born 2007). Thus, subnetworks
whose slow oscillations are coordinated are more likely to be further linked through
long term plasticity. Indeed, boosting slow oscillations by external potential fields has
been shown to enhance declarative memories, providing further evidence that coherent
up and down state transitions may subserve memory consolidation processes (Mar-

123
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shall et al. 2006). In total, synchrony may provide a functionally relevant way to link
the activities of related neuronal assemblies, allowing appropriate reactivation during
waking hours (Steriade 2006).

We have proposed two possible ways for synchrony of up and down states to occur:
(a) common noise in the activating currents of neurons in distinct populations and
(b) common noise in the slow hyperpolarizing currents of distinct neural populations.
The first mechanisms could arise through common excitatory input to each popula-
tion, as in previous studies of correlation-induced synchrony in olfactory bulb neurons
(Galán et al. 2006). The second mechanism must arise via common chemical forcing
of hyperpolarizing current. One way this could occur is via common astrocytic calcium
signaling (Volterra et al. 2014). Calcium propagates rapidly in waves through astro-
cytes (Newman 2001), which could generate a common signal on calcium activating
hyperpolarizing currents (Bond et al. 2004). Furthermore, slow afterhyperpolarizing
currents can be modulated by acetylcholine (Faber and Sah 2005). Global modulations
of acetylcholine are often observed during slow wave sleep (Steriade 2004), so this may
provide another mechanism for the common perturbation of slow afterhyperpolarizing
currents.

Other previous studies have explored phenomenological models of up/down state
transitions in neural populations. For instance, Holcman and Tsodyks (2006) intro-



Z. T. McCleney, Z. P. Kilpatrick

(2009). Interestingly, shared noise can actually stabilize the anti-phase locked state in
this case, even though it is unstable in the absence of noise. Furthermore, it is known
that coupling spanning long distances can be subject to axonal delays. In spite of
this, networks of distantly coupled clusters of cells can still sustain zero-lag synchro-
nized states (Vicente et al. 2008). However, there are some cases in which such delays
can destabilize the phase-locked states (Earl and Strogatz 2003; Ermentrout and Ko
2009), in which can another mechanism would be needed to explain the synchroniza-
tion of up/down states. Thus, we could also explore the impact of delayed coupling,
determining how features of phase sensitivity function interact with delay to promote
in-phase or anti-phase synchronized states. Lastly, we note that a systematic analysis
of phase equations for relaxation oscillators has been applied to the general case of
slow variables in (Izhikevich 2000). We expect that the approach developed therein,
using the Malkin theorem, could be be applied to the system Eq. (1), even in the case
of a discontinuous firing rate function.
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