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and population mean, inconsistent with experimental find-
ings (Fig. 1) (13-15).

Previous mathematical models have typically relied on
Hill functions to describe transcriptional repression in the
negative feedback loop (13-15). However, in a recent theo-
retical study it was shown that circadian clocks behave very
differently when transcriptional repression occurs via pro-
tein sequestration, in which repressor inhibits a transcrip-
tional activator via 1:1 stoichiometric binding (Fig. 2 A),
rather than highly nonlinear Hill-type regulation (Fig. 2 B
and see Fig. S1 in the Supporting Material) (23). That is,
a model based on protein sequestration successfully repro-
duced various experimental observations that have not
been addressed by previous models based on Hill-type regu-
lation, such as the importance of a 1:1 molar ratio between
repressor and activator and an additional negative feedback
loop via Rev-erba/b for robust circadian timekeeping
(23-25). This indicates that the mechanism of transcrip-
tional regulation plays a key role in determining the behav-
iors of circadian clocks.

Interestingly, recent experimental studies have found that
protein sequestration is responsible for repression in the
negative feedback loops of circadian clocks in multicellular
organisms (D s _ h e at gGe and mammals), which
have intercelluldcoupling among the pacemaker cells in
the brain (24,26,27,29). In contrast, a phosphorylation-
based repression mechanism appears to be used in organ-
isms which do not have this intercellular coupling. In a
syncytium, & §' s «* s ¢, the repressors transiently
bind activators alf induce phosphorylation at multiple
activator sites, and thus repress its transcriptional activity
(see Fig. S1) (30). A similar phosphorylation-based repres-
sion mechanism is used in a unicellular organism, cyano-
bacteria, in which KaiA phosphorylates the multiple
sites of KaiC (31), which leads to Hill-type regulation
(32,33). These different repression mechanisms of organ-
isms depending on the presence of intercellular coupling

raises the question of whether the transition to protein
sequestration is important for synchronizing the rhythms
of multiple cells.

Here, we show that when transcriptional repression
occurs via protein sequestration, but not Hill-type regula-
tion, the coupled periods are near the mean period of the in-
dividual cells within the SCN. To do this, we first compare



loop (~24 h) to synchronize rhythms with the period close to
the population mean.

We found that the mechanisms underlying the intracel-
lular feedback loop play a pivotal role in regulating the
coupled period. This reveals that two of the major
functions of the SCN—the generation of a rhythm within
a cell and synchronization of the rhythm across the
population—are closely related. Furthermore, these findings
indicate that the intracellular feedback mechanism of multi-
cellular organisms—a different type of mechanism from






The Coupled Period of the Circadian Clock
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FIGURE 4 The coupled periods of heteroge-
neous cells in the PS and HT model. (A) When a
fast cell and a slow cell are coupled, the
coupled frequencies, at which two cells synchro-
nize, of the PS model are similar to the mean fre-
quency of uncoupled cells, but (B) those of HT
model is greater than the mean frequency. Fre-
quencies are estimated using a fast Fourier

intermediate reaction steps, which allows the model to oscil-
late with a lower Hill coefficient (32,39,40). Even with a low
Hill coefficient, the coupled period of the model is still far
from the mean period in this extended HT model (see
Fig. S5).

The coupled periods of heterogeneous cell
population

Next, we test how the coupling affects the periods in a pop-
ulation of 100 cells with different intrinsic periods. To
achieve heterogeneity we again rescale the time of each
cell in the population using 100 rescaling factors sampled
from a normal distribution with mean 1 and standard devia-
tion 0.15. This generates variability in periods similar to that
observed in the SCN (Fig. 1) (7,8,50). In the PS model,
increasing coupling strength again causes the frequencies
of individual cells to cluster around the population mean
of the uncoupled cells (Fig. 4 C). When coupling strength
exceeds a threshold (m ~ 0.3), rhythms are synchronized
with frequencies close to the population mean (Fig. 4 C).
However, in the HT model, as coupling strength increases,
frequencies cluster around a value greater than the mean fre-
quency of the uncoupled cells (Fig. 4 D). When the coupling
strength exceeds a threshold (m ~ 0.3), the population syn-
chronizes at a frequency significantly above the population
mean (Fig. 4 D). The frequencies of the coupled HT model
only approach the population mean when the coupling
strength far exceeds the threshold (m ~ 1) (see Fig. S6).
With coupling this strong, the coupled frequencies of the

transform and normalized to make the mean
frequency unity. Two different frequencies of
single cell models are obtained by dividing all pro-
duction and degradation rates by common rescaling
factors of 1 and 1.2, respectively. These results are
robust against parameter changes (see Fig. S3)
and the introduction of nonlinearities in the coupling
(see Fig. S4). Here, we represent the results
involving m = 0, 0.05, 0.1, ..., 0.3. (C) When 100
cells with different periods are coupled, the coupled
frequencies of the PS model converge to the mean
frequency of uncoupled cells, but (D) those of the
HT model become larger than the mean frequency.
Here, 100 rescaling factors for different frequencies
are drawn randomly from a normal distribution of
mean 1 and standard deviation 0.15, matching the
experimental data (Fig. 1, A and B). See Fig. S6
for stronger coupling strengths and Fig. S7 for cell
populations with larger heterogeneities. To see this
figure in color, go online.

PS model become slightly smaller than the mean frequency
(see Fig. S6). However, experimental evidence suggests that
the coupling strength is much smaller than unity (47).
Furthermore, the HT model can exhibit synchronous oscil-
lations at a frequency close to the population mean only at
an unrealistically large coupling strength. This would
require a large amount of neurotransmitters at a high cost
to the organism. Thus, the PS model with the weak coupling
provides a more efficient mechanism for synchrony than the
HT model with strong coupling. We also examine systems
of oscillators whose distribution of uncoupled periods had
a larger variability. Even in this case, the PS model synchro-
nizes at frequencies that are close to the population mean
(see Fig. S7 A). However, the frequencies of the synchro-
nized HT model are again much larger than the mean with
the realistic coupling strength (see Fig. S7 B).

iPRCs and average interaction functions (AlFs) of
PS model and HT model

We have shown that the period of the synchronous population
is close to the population mean for the PS model, but signif-
icantly shorter than the population mean for the HT model
(Fig. 4). To understand the mechanisms that underlie this
difference, we employ the theory for weakly coupled oscilla-
tors, which has been used widely to understand synchroniza-
tion in networks of oscillators (51-53). Assuming weak
coupling (47), the theory allows us to describe the essential
dynamics of the four-dimensional cell model (Eg. 5) using
a single differential equation for the phase of the limit cycle.
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To derive the equation for the phase dynamics, first, we
need to estimate the iPRCsZ (q), in response to mRNA
perturbation,

Aq

where‘k represents the brief perturbation of mRNA and
Aq represents the phase change due to the perturbation of
mRNA. Numerically we calculate the iPRCs for both the
PS and HT models (54). The advance and delay region of
the iPRC are balanced in the PS model (Fig. 5 A), whereas
the advance regions of the iPRC is much larger than the
delay region in the HT model (Fig. 5 B). Importantly, the
iPRC of the PS model more closely resembles the experi-
mentally measured PRC than does the iPRC of the HT
model. When the PRC is measured in response to 100 nM
VIP in the SCN, the delay region is slightly larger than
the advance region (47).

Next, we explore why the iPRC of the PS model is more
balanced than that of the HT model. To do this, we analyze
the magnitudes of the maxima and minima of the iPRCs in
the models, which indicate the largest phase advance and
delay, respectively. We found that the extrema of the iPRC
occur when the time derivative of the mRNA is zero—i.e.,
when the transcription and degradation rates of the mRNA
are equal (arrows in Fig. 5, C and D). This occurs because
the phase of the oscillation is most sensitive to mMRNA
changes when the time derivative of the mRNA is zero
(see the Appendix). Furthermore, we found that the slope
of the transcription rate at these times appears to determine
the extrema of the iPRC. That is, the maximum and mini-
mum of the iPRC is approximately proportional to the in-
verse of the slope of transcription rates (see Appendix for
details) (
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where b is the slope of transcription rates at the phase when
the iPRC is extremaf is the reference time, and® is the
Lambert’ function—a branch of the inverse of’ﬁ.
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than sigmoidal (Fig. 2 D), the iPRCs and AlFs are balanced
(Fig. 5 E), and the coupled periods are close to the popula-
tion mean period (Fig. 4 B and D). Interestingly, only pro-
tein sequestration appears to lead piecewise linear gene
regulation among other proposed rhythm generating mech-
anisms such as oligomerization, multiple phosphorylation,
and cooperative enzyme kinetics (32). However, it would
be interesting to examine further if such exist and study their
effect on synchronous oscillations.

Circadian clocks are widely found in organisms as diverse
as bacteria, algae, plants, fungi, insects, and mammals (56).
Whereas each of these organisms appear to use an intracel-
lular negative feedback loop to generate circadian rhythms,
there is a variety of mechanisms by which negative feedback
is mediated. In mammals and D s _ h the repressor
(PER) appears to inhibit the activatt® (BMAL1-CLOCK
in mammals and CYC-CLK in D s _ k) through protein
sequestration. In both of these clocks; fepressors tightly bind
activators in a 1:1 stoichiometric complex, prohibiting acti-
vators from binding DNA (24,26,27,29). In contrast, a phos-
phorylation-based repression mechanism appears to be used
in#f s. ¢ gsa (see Fig. S1). Here, the repressor
(FRQ) bilts the activator (WC complex) transiently and re-

cruits kinases, which phosphorylate multiple sites of the
activator (WC complex) and represses the transcriptional
activity of the activator (30). Furthermore, the repressor
concentration inﬁ { 5. o is much lower than that of
the activator in nicleus, fcause kinase at low concentration
is usually enough to phosphorylate its substrate (57-59). A
similar phosphorylation-based repression mechanism is
used in cyanobacteria, in which KaiA phosphorylates the
multiple-sites of KaiC (31).

Taken together, protein sequestration appears to be used
as a repression mechanism in multicellular organisms,
mammals, and D s _ k. butnotina syncytium;—# fos-

. canda unicellufa® organism, cyanobacteria. THis raises
“the question of why different mechanisms are used for tran-
scriptional regulation depending on the type of organism. It



region of SCN (5,6). Future models should include various
neurotransmitters and spatial heterogeneity with various
network architecture of coupling (15). Testing our predic-
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