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Traveling Pulses and Wave Propagation Failure in Inhomogeneous Neural Media∗
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Abstract. We use averaging and homogenization theory to study the propagation of traveling pulses in an
inhomogeneous excitable neural network. The network is modeled in terms of a nonlocal integro-
differential equation, in which the integral kernel represents the spatial distribution of synaptic
weights. We show how a spatially periodic modulation of homogeneous synaptic connections leads
to an effective reduction in the speed of a traveling pulse. In the case of large amplitude modulations,
the traveling pulse represents the envelope of a multibump solution, in which individual bumps are
nonpropagating and transient. The appearance (disappearance) of bumps at the leading (trailing)
edge of the pulse generates the coherent propagation of the pulse. Wave propagation failure occurs
when activity is insufficient to maintain bumps at the leading edge.
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1. Introduction. Traveling waves of electrical activity have been observed in vivo in a
number of sensory cortical areas including the somatosensory cortex of behaving rats [30],
turtle and mollusk olfactory bulbs [22, 23], turtle cortex [34], and visuomotor cortices in
the cat [36]. Such waves are usually seen during periods without sensory stimulation; the
subsequent presentation of a stimulus then induces a switch to synchronous oscillatory behav-
ior [13]. Traveling waves are also a characteristic feature of certain neurological disorders in
humans, including epilepsy [8] and migraines [24]. Therefore, investigating the mechanisms
underlying wave propagation in neural tissue is important for understanding both normal and
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Mathematical analyses of cortical wave propagation typically consider reduced one-dimen-
sional network models. Under the additional assumption that the synaptic interactions are
homogeneous, it has been shown that an excitatory neural network supports the propaga-
tion of a traveling front [12, 19, 5] or, in the presence of slow adaptation, a traveling pulse
[39, 1, 31, 42, 43, 10, 11, 14, 38]. However, the patchy nature of long-range horizontal connec-
tions in superficial layers of certain cortical areas suggests that the cortex is more realistically
modeled as an inhomogeneous neural medium. For example, in the primary visual cortex
the horizontal connections tend to link cells with similar stimulus feature preferences such as
orientation and ocular dominance [28, 41, 2]. Moreover, these patchy connections tend to be
anisotropic, with the direction of anisotropy correlated with the underlying orientation pref-
erence map. Hence the anisotropic pattern of connections rotates approximately periodically
across the cortex resulting in a periodic inhomogeneous medium [3, 4]. Another example of
inhomogeneous horizontal connections is found in the prefrontal cortex [27, 29, 17], where
pyramidal cells are segregated into stripes that are mutually connected via horizontally pro-
jecting axon collaterals; neurons within the gaps between stripes do not have such projections.

In this paper we investigate how a spatially periodic modulation of long-range synaptic
weights affects the propagation of traveling pulses in a one-dimensional excitatory neural net-
work, extending previous work on traveling fronts in neural network models [3] and reaction-
diffusion systems [20, 21]. We proceed by introducing a slowly varying phase into the traveling
wave solution of the unperturbed homogeneous network, and then we use perturbation theory
to derive a dynamical equation for the phase, from which the mean speed of the wave can
be calculated. We show that a periodic modulation of the long-range connections slows down
the wave, and if the amplitude and wavelength of the periodic modulation is sufficiently large,
then wave propagation failure can occur. A particularly interesting result of our analysis is
that in the case of large amplitude modulations, the traveling pulse is no longer superthreshold
everywhere within its interior, even though it still propagates as a coherent solitary wave. We
find that the pulse now corresponds to the envelope of a multibump solution, in which indi-
vidual bumps are nonpropagating and transient. The appearance (disappearance) of bumps
at the leading (trailing) edge of the pulse generates the propagation of activity; propagation
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(2.2) f(u) =
1

1 + e−η(u−κ)
,

where η is a gain parameter and κ is a threshold. As η → ∞, f → H, where H(u) = Θ(u−κ)
and

(2.3) Θ[u] =

{
0, u ≤ 0,
1, u > 0.

The periodic microstructure of the cortex is incorporated by taking the weight distribution to
be of the form [3, 4]

(2.4) w(x, x′) = W (|x − x′|)
[
1 + D′

(
x′

ε

)]
,

where D is a 2π-periodic function and ε determines the microscopic length-scale. (We consider
the first-order derivative of D so that the zeroth-order harmonic is explicitly excluded.) It
is important to note that (2.4) is a one-dimensional abstraction of the detailed anatomical
structure found in the two-dimensional layers of real cortex. (See [6] for a more detailed
discussion of cortical models.) However, it captures both the periodic-like nature of long-
range connections and possible inhomogeneities arising from the fact that this periodicity is
correlated with a fixed set of cortical feature maps.

For concreteness, we take the homogeneous weight function W
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Although the inhomogeneous system is not translationally invariant, we can assume that per-
turbations about the homogeneous system will provide us with nearly translationally invariant
solutions [20]. Thus, we perform the change of variables ξ = x − φ(t) and τ = t so that (3.3)
becomes

∂u(ξ, τ)

∂τ
= −u(ξ, τ) +

∫ ∞

−∞
W (ξ − ξ′)f(u(ξ′, τ))dξ′ + φ′∂u(ξ, τ)

∂ξ

+ ε

∫ ∞

−∞
D

(
ξ′ + φ

ε

) [
W ′(ξ − ξ′)f(u(ξ′, τ)) − W (ξ − ξ′)

∂f(u(ξ′, τ))

∂ξ′

]
dξ′,

1

α

∂v(ξ, τ)

∂τ
= −v(ξ, τ) + u(ξ, τ) +

φ′

α

∂v(ξ, τ)

∂ξ
.(3.4)

Next perform the perturbation expansions

u(ξ, τ) = U(ξ) + εu1(ξ, τ) + ε2u2(ξ, τ) + · · · ,(3.5)

v(ξ, τ) = V (ξ) + εv1(ξ, τ) + ε2v2(ξ, τ) + · · · ,(3.6)

φ′(τ) = c + εφ′
1(τ) + ε2φ′

2(τ) + · · · ,(3.7)

where (U(ξ), V (ξ))T is a traveling pulse solution of the corresponding homogeneous system
(see (3.2)) and c is the speed of the unperturbed pulse. The first-order terms u1, v1 satisfy

(3.8) − ∂

∂τ

(
u1(ξ, τ)

v1(ξ, τ)/α

)
+ L

(
u1(ξ, τ)
v1(ξ, τ)

)
= −φ′

1(τ)

(
U ′(ξ)

V ′(ξ)/α

)
+

(
h1(ξ, φ

ε )
0

)
,

where

(3.9) L
(

u
v

)
=

(
cdu

dξ − u +
∫ ∞
−∞ W (ξ − ξ′)f ′(U(ξ′))u(ξ′)dξ′ − βv

c
α

dv
dξ

≡∞0.u∈35∞ Tf
0.8893 ∈.0∈94 7874 TD
(+)T|
/FF∞∞9∞7Tf
50 ∞0.90993u∞∈∈3.58∞ 354.85∞ m
∈∈9.0∈ 354.85∞ 
(+)889 08 TD
(−∞)F∞∞ ∞56 TD
(8or -0.88∞8 TD
(c)T530Tf
0.77[(u Tf
66478v 0 TD
0(−)T|
/F∞08∞53
0.5504 0 TD
( 4∈
(,)T|
/44 Tf
0.38C0 0 7.98 TD
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It follows from (3.2) with f = H that

−c U
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For c >
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Having found the null-solution (4.14), we now determine the phase function Φ1 given
by (3.16) with f = H. First, the constant K of (3.14) is evaluated by substituting for
(A(ξ), B(ξ)) using (4.14) and substituting for (U(ξ), V (ξ)) using (4.7) and (4.8). The rather
lengthy expression for K is given in the appendix. Next, we evaluate the double integral on
the right-hand side of (3.16) by setting D(x) = eix and using Fourier transforms. This gives

(4.22) KΦ1

(
φ

ε

)
=

i

ε
eiφ/ε

∫ ∞

−∞
W (x)

[∫ ∞

−∞
eiqxÃ∗(q)f̃(U)(q + ε−1)

dq

2π

]
dx,

where ∗ denotes complex conjugate and

(4.23) Ã(q) =

∫ ∞

−∞
eiqxA(x)dx.

In the case of a Heaviside nonlinearity and a pulse of width a, f(U(ξ)) = Θ(ξ + a) − Θ(ξ),
and A(x) is given explicitly by the first component of the null-vector in (4.14). Taking Fourier
transforms of these expressions shows that

(4.24) Ã(q) = −
(
1 + χe−iqa

) [
γ+

iq − μ+
+

γ−
iq − μ−

]
, f̃(U)(q) =

1 − e−iqa

iq − 0+
.

If these Fourier transforms are now substituted into (4.22), we have

KΦ1

(
φ

ε

)
=

eiφ/ε

ε

∫ ∞

−∞
W (x)

[∫ ∞

−∞

{
γ+(1 − e−i(q+ε−1)a + χeiqa − χe−ia/ε)eiqx

(q + ε−1 + i0+)(q − iμ+)

+
γ−(1 − e−i(q+ε−1)a + χeiqa − χe−ia/ε)eiqx

(q + ε−1 + i0+)(q − iμ−)

}
dq

2πi

]
dx.(4.25)

The resulting integral over q can be evaluated by closing the contour in the upper-half or
lower-half complex q-plane depending on the sign of x, x ± a. We find that there are only
contributions from the poles at q = iμ± with μ± > 0, whereas there is a removable singularity
at q = −ε−1 − i0+. Thus

KΦ1

(
φ

ε

)
=

γ+eiφ/ε

ε(ε−1 + iμ+)

[(
1 − χe−ia/ε

)
Ω̂+(0) + χΩ̂+(−a) − e−ia/εΩ̂+(a)

]
+

γ−eiφ/ε

ε(ε−1 + iμ−)

[(
1 − χe−ia/ε

)
Ω̂−(0) + χΩ̂−(−a) − e−ia/εΩ̂−(a)

]
,(4.26)

with

(4.27) Ω̂±(s) =

∫ ∞

0
W (x + s)e−μ±xdx.

Taking the imaginary part of the above equation then determines the phase function KΦ1 for
D(x) = ρ sin(x). After a straightforward calculation, we find that

K

ρ
Φ1

(
φ

ε

)
= (Ξ+ + Ξ−) sin

(
φ

ε

)
+ (Π+ + Π−) sin

(
φ − a

ε

)
+ (Υ+ + Υ−) cos

(
φ

ε

)
+ (Ψ+ + Ψ−) cos

(
φ − a

ε

)
,(4.28)

where the explicit expressions for Ξ±, Π±, Υ±, Ψ± are given in the appendix.
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poles, and in general Φ1 will consist of exponentially small terms. It follows that Φ1 may be
less significant than the O(ε2) terms ignored in the perturbation expansion of (3.4). There-
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mm (see Figure 2), whereas waves in slices tend to be only 1 mm wide [31]. More realistic
widths and wave speeds could be generated by taking the effective range of synaptic connec-
tions to be a few hundred μ m, that is, by assuming that the predominant contribution to
synaptic excitability is via local circuitry rather than via long-range patchy horizontal con-
nections. However, inhomogeneities occurring at smaller spatial scales are unlikely to exhibit
any periodic structure.

Irrespective of these particular issues, our analysis raises a more general point that would
be interesting to pursue experimentally; namely, is it possible to detect the effects of net-
work inhomogeneities by measuring the properties of traveling waves? Signatures of such
inhomogeneities would include time-dependent rippling of the wave profile and variations in
wave speed. However, such features may not be detectable given the current resolution of
microelectrode recordings.

Appendix. In this appendix we present the explicit parameter-dependent expressions for
the various coefficients appearing in the solution of the phase function Φ1, (4.28). First, the
constants premultiplying the periodic functions on the right-hand side of (4.28) are as follows:

Ξ± =
γ±

1 + μ2
±ε2

[
1

2(1 + μ±)
+

χ

2

(
e−a − e−μ±a

μ± − 1
+

e−μ±a

μ± + 1

)]
,

Π± =
γ±

1 + μ2
±ε2

[
− χ
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− χ[γ+e−μ+a(1 − m+)(1 + α−1β−1(m− − 1)(1 − m+))]

∫ 0

−a
e−μ+ξM′

−(ξ)dξ

− χ[γ−e−μ−a(1 − m+)(1 − α−1β−1(1 − m−)2)]

∫ 0

−a
e−μ−ξM′

−(ξ)dξ.

The individual integrals can be computed as follows:∫ ∞

0
e−μ±ξM′

±(ξ)dξ =
e−a − 1

2c(m+ − m−)(μ± + 1)2
,

∫ ∞

0
e−μ+ξM′

−(ξ)dξ =
e−a − 1

2c(m+ − m−)(μ− + 1)(μ+ + 1)
,

∫ ∞

0
e−μ−ξM′

+(ξ)dξ =
e−a − 1

2c(m+ − m−)(μ+ + 1)(μ− + 1)
,

and ∫ 0

−a
e−μ±ξM′

±(ξ)dξ =
1

2c(m+ − m−)

{
a

(μ± − 1)
+

1 − e(μ±−1)a

(μ± − 1)2

+
e−a(e(μ±+1)a − 1)

(μ± + 1)2
− a

2(μ± + 1)

}
,

∫ 0

−a
e−μ+ξM′

−(ξ)dξ =
1

2c(m+ − m−)

{
1 − e−(μ−−μ+)a

(μ− − μ+)(μ− − 1)
− e(μ+−1)a − 1

(μ+ − 1)(μ− − 1)

+
eμ+a − e−a

(μ+ + 1)(μ−
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