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fronts [38], and stationary bumps [39] can all be analyzed
in stochastic neural Þelds with the aid of small-noise expan-
sions originally developed to analyze wave propagation in
stochastic partial differential equations [40]. Such an approach
typically results in a diffusion equation for the position of the
spatiotemporal activity, but upon considering a neural Þeld
with multiple layers, the effective equations are multivariate
Orstein-Uhlenbeck (OU) processes instead [30]. Thus, the
perturbation expansion allows one to examine the effects
of connectivity between layers, in addition to noise. Since
recordings of cortical activity are becoming substantially
more detailed [3,4], the time is ripe for extending theories
of spatiotemporal activity patterns in cortex.

We extend our previous work from [30] in several ways.
First of all, our analysis of deterministic systems with laminar
structure analyzes the effect of arbitrarily strong coupling upon
the propagation speed of waves and the width of traveling
pulses. Interlaminar coupling increases (decreases) the speed
of waves in the case of fronts (pulses). In addition, we Þnd
that such a shift in wave speed appears in the weak coupling
calculations we perform in the case of the stochastic neural
Þeld. This is due to reßections and, for pulses, the synaptic
connectivity function no longer being reßection symmetric.
We also note that, in the case of traveling fronts, we explore the
effect of noise correlation lengths upon the effective diffusion
of waves. Our Þndings suggest noise with longer correlation
length leads to higher diffusion, and thus more irregular wave
propagation. Finally, we remark that our results show that our
perturbation analysis provides accurate asymptotic results for
propagating waves, in addition to stationary bumps.

The paper will proceed as follows. In Sec.II , we introduce
the models we explore, showing how noise and a multilaminar
structure can be introduced into neural Þeld models [37].
One important point is that the correlation structure of
spatiotemporal noise can be tuned in the model, and changing
this has nontrivial effects on the resulting dynamics. We
proceed, in Sec.III , to show how a combination of interlaminar
connectivity along with noise affects the propagation of
traveling fronts in an excitatory neural Þeld model. As in [30],
we are able to derive an effective equation for the position
of the front, which takes the form of a multivariate OU
process. Finally, we derive similar results for traveling pulse
propagation in asymmetric neural Þelds in Sec.IV.

II. LAMINAR NEURAL FIELD MODEL

We will consider two different models for wave propagation
in neural Þelds. They both take the form of a system of coupled
stochastic neural Þeld equations

du1(x,t ) =
[
−u1 +

2∑
k=1

w1k ∗ f (uk)

]
dt + � 1/ 2dW1(x,t ),

(1a)

du2(x,t ) =
[
−u2 +

2∑
k=1

w2k ∗ f (uk)

]
dt + � 1/ 2dW2(x,t ),

(1b)

whereuj (x,t ) is the neural activity of populationj at x ∈ �
at timet, and the effects of synaptic architecture are described
by the convolution

wjk
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spatial correlations using a cosine shaped correlation function
Cj (x) = 	 j cos(x/
 ), along with correlated noise component
with a cosine proÞle soCc(x) = 	 c cos(x/
 ). In both these
cases, in the limit	 c → 0, there are no interlaminar noise
correlations, and in the limit	 c → max(	 1,	 2), noise in each
layer is maximally correlated.

III. DUAL LAYER EXCITATORY NETWORK

A. Coupled front propagation

To begin, we examine a network of two coupled excitatory
layers, which individually produce propagating fronts. This
analysis should be contrasted with that in [36], which explored
fronts coupled with depressing inhibition as a means of
modeling binocular rivalry waves. We will start by considering
the noise-free case and allow the interlaminar connectivity to
be arbitrarily strong, so we take� → 0 while øw12 and øw21 can
be any value.
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FIG. 1. (Color online) (a) Speedc and (b) position parametera
of coupled traveling fronts (12) as determined by the implicit system
(13). Noticea = 0 when øw21 = øw12. Threshold� = 0.4.

FIG. 2. (Color online) Evolution of coupled fronts (12) in space-
time. (a) When øw12 = øw21 = 0.1, fronts propagate at the same speed
with the same threshold crossing pointxc(t) (solid line), where
u1(xc(t),t ) = u2(xc(t),t ) = � . (b) When øw12 = 0.1 and øw21 = 0.01,
the crossing pointx1(t) of the front in the Þrst layeru1(x1(t),t ) = �
(solid line) stays ahead of the crossing pointx2(t) (dashed line) of the
front in the second layeru2(x2(t),t ) = � .

so excitatory coupling ( øwc > 0) between layers increases the
speedc of both fronts. Finally, in the limit øwc � 0, there are
two decoupled fronts, both with speedc = 1/ (2� ) Š 1. This is
the limit from which we will build our theory of stochastically
driven coupled fronts.

In the limit øwc � 0, the fronts (12) are neutrally stable
to perturbations in both directions. To see this, we consider
the perturbed front solutionsuj (
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FIG. 3. (Color online) (a) Uncoupled frontsu1 andu2 propagat-
ing in the dual layer stochastic neural Þeld have leading edges (solid
and dashed lines, respectively) that spread apart due to separate
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where the associated diffusion coefÞcients of the variance
are

Dj = �

∫ ∞
−∞

∫ ∞
−∞ � j (x)� j (y)Cj (x − y)dx dy[ ∫ ∞

−∞ � j (x)U ′
j (x)dx

]2 , (28)

for j = 1,2, and covariance is described by the coefÞcient

Dc = �

∫ ∞
−∞

∫ ∞
−∞ � 1(x)� 2(y)Cc(x − y)dx dy[ ∫ ∞

−∞ � 1(x)U ′
1(x)dx

][ ∫ ∞
−∞ � 2(x)U ′

2(x)dx
] .

With the stochastic system (22) in hand, we can show how
coupling between layers affects the variability of the positions
of fronts subject to noise. To do so, we diagonalize the matrix
K = V� V−1 with right eigenvector matrix

V =
(

1 � 1
1 −� 2

)
,

and � = diag(� 1,� 2). Front positions (
 1,
 2)T are neu-
trally stable (� 1 = 0) to perturbations in the same direction
v1 = (1,1)T and stable [� 2 = −(� 1 + � 2)] to perturbations in
opposite directionsv2 = (� 1, − � 2)T .

We now show how coupling leads to a time-varying mean
in �(t) as opposed to the case of bumps [30]. With the
diagonalizationK = V� V−1, assuming�(0) = 0, the mean
〈�(t)〉 = ∫ t

0 eK(t−s)dsJ, so

〈�〉 =
(At + B� 1(1 − e−(� 1+� 2)t )

At − B� 2(1 − e−(� 1+� 2)t )

)
,

where A = � 1� 2+� 2� 1
� 1+� 2

, B = � 1−� 2
(� 1+� 2)2 , and we have used the

diagonalizationeKt = Ve�t V−1. Since� 2 = −(� 1 + � 2) < 0,

lim
t→∞〈�(t)〉 =

(
At + B� 1
At − B� 2

)
,

so the net mean effect of weak coupling is to slightly increase
the wave speed (At) and potentially alter the relative position
of the fronts (B). We would expect this, based on the speeding
up of fronts observed in our deterministic analysis. Note that
if � 1 = � 2, thenB = 0 and the fronts will have the same mean
position.

To understand the collective effect that noise and coupling

��(t)2

T(t)〉 =

=

t

0

e

K(t−s)VeK

T

(t−s)
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using (12) (see also [46,47]):

Uj (� ) =



�eŠ� : � > 0

1 Š (1Š2� )2

1Š4� e
2��

1Š2� + �e�

1Š4� : � < 0
(33)

and we differentiate (33) to yield

U

j (� ) =



Š�eŠ� : � > 0

Š 2� (1Š2� )
1Š4� e

2��
1Š2� + �e�

1Š4� : � < 0.
(34)

Now, we can solve explicitly for the null vectors ofL � .
Plugging (33) and (34) into (21), and using the derivative

d
dU

H [Uj (� ) Š � ] =
� (� )

|U
(0)|
=

� (� )
�

(35)

in the sense of distributions, we Þnd that each of the two
equations in the vector systemL � � = 0 is

c
d� j

d�
+ � j =

� (� )
�

� �

Š�
w(y)� j (y)dy, j = 1,2 (36)

where�
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FIG. 5. (Color online) Effects of cosine correlated noise
[Cj (x) = cos(x)] on propagation of coupled fronts. Theory given
by (41). As the strength of identical reciprocal coupling� 1 = � 2 = �
is increased, the variance of front position〈
 1(t)(
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Thus, we can integrate the two equations (46) and ap-
ply the threshold conditionsU1
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FIG. 9. Pulse widtha1 = a2 = a as a function of the asymmetry
� of the local weight functionsw1(x) = w2(x) = cos(x Š � ) for
varying amplitudes of reciprocal symmetric strength øw12 = øw21 =
øwc. Increasing the strength øwc shifts the saddle-node bifurcation,
at which the stable (solid) and unstable (dashed) branches of pulse
solutions, to the right in� . Other parameter� = 0.4.

neuronal network that supported fronts. Essentially, pertur-
bations must obey (15), which has an eigenvalue� = 0
associated with the eigenfunctionU


j for each layerj = 1,2.
As in the case of traveling fronts, coupled pulses are still
neutrally stable to perturbations that move them in the same
direction. However, we will now show that coupling layers
stabilizes pulses to perturbations that pull them in opposite
directions.

B. Noise-induced motion of coupled pulses

Now, we analyze the effects of weak noise on the
propagation of pulses in the presence of reciprocal coupling
that is weak [w12,w21 = O(� 1/ 2)] and local coupling that
is identical (w11 = w22 = w). To start, we presume noise
causes each pulseÕs position to wander, described by stochastic
variables
 1(t) and
 2(t), and each pulseÕs proÞle ßuctuates,
described by the stochastic variables� 1(x,t ) and � 2(x,t ).
As in the case of coupled traveling fronts, this is described
by the expansion given by the ansatz (18). Plugging this
into (1) and expanding in powers of� 1/ 2, we Þnd the
pulse solution atO(1) where øw12 = øw21 � 0. At O(� 1/ 2),
we Þnd the system (19) with associated linear operator
L given by (20), as we found for the excitatory network
with fronts. Next, we apply a solvability condition to (19),
where the inhomogeneous part must be orthogonal to the null
space of

L � p =
�

Šcp
 Š p + f 
(U1)[w(Šx) � p(x)]

Šcq
 Š q + f 
(U2)[w(Šx) � q(x)]

	
, (53)

where p = (p(x),q(x))T . It is important to note that an
asymmetric weight functionw(x), like (3), leads to a slightly
different form forL � , now involving terms such asw(Šx) �
p(x) =

� �
Š� w(y Š x)p(y)dy. Again, we can decompose the

null space ofL � into two orthogonal elements that take
the forms (� 1,0)T and (0,� 2)T . Rearranging the resulting
solvability condition shows that the stochastic vector� (t) =
(
 1(t),
 2(t))T obeys the multivariate Ornstein-Uhlenbeck
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FIG. 10. (Color online) Effects of cosine correlated noise
[Cj (x) = cos(x)] on propagation of coupled pulses. Theory (solid
line) computed using (58) matches numerical computations (dashed
line) fairly well. As the strength of identical reciprocal coupling
� 1 = � 2 = � is increased, the variance of pulse position〈
 1(t)2〉
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two-dimensional space. Our analysis could then lend insight
into the neural architecture that leads to the most faithful
representation of an animalÕs present position.
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