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fronts [38], and stationary bumps3f] can all be analyzed whereu; (x,t) is the neural activity of population atx
in stochastic neural bPelds with the aid of small-noise expanat timet, and the effects of synaptic architecture are described
sions originally developed to analyze wave propagation irby the convolution
stochastic partial differential equatior®)]. Such an approach
typically results in a diffusion equation for the position of the Wik
spatiotemporal activity, but upon considering a neural beld
with multiple layers, the effective equations are multivariate
Orstein-Uhlenbeck (OU) processes inste&d].[ Thus, the
perturbation expansion allows one to examine the effects
of connectivity between layers, in addition to noise. Since
recordings of cortical activity are becoming substantially
more detailed 3,4], the time is ripe for extending theories
of spatiotemporal activity patterns in cortex.

We extend our previous work fronB8(] in several ways.
First of all, our analysis of deterministic systems with laminar
structure analyzes the effect of arbitrarily strong coupling upon
the propagation speed of waves and the width of traveling
pulses. Interlaminar coupling increases (decreases) the speed
of waves in the case of fronts (pulses). In addition, we Pnd
that such a shift in wave speed appears in the weak coupling
calculations we perform in the case of the stochastic neural
Peld. This is due to refRections and, for pulses, the synaptic
connectivity function no longer being ref3ection symmetric.
We also note that, in the case of traveling fronts, we explore the
effect of noise correlation lengths upon the effective diffusion
of waves. Our Pndings suggest noise with longer correlation
length leads to higher diffusion, and thus more irregular wave
propagation. Finally, we remark that our results show that our
perturbation analysis provides accurate asymptotic results for
propagating waves, in addition to stationary bumps.

The paper will proceed as follows. In Sel.we introduce
the models we explore, showing how noise and a multilaminar
structure can be introduced into neural peld mod8M. [
One important point is that the correlation structure of
spatiotemporal noise can be tuned in the model, and changing
this has nontrivial effects on the resulting dynamics. We
proceed, in Sedll, to show how a combination of interlaminar
connectivity along with noise affects the propagation of
traveling fronts in an excitatory neural beld model. As3q|[
we are able to derive an effective equation for the position
of the front, which takes the form of a multivariate OU
process. Finally, we derive similar results for traveling pulse
propagation in asymmetric neural Pelds in SgCc.

II. LAMINAR NEURAL FIELD MODEL

We will consider two different models for wave propagation
in neural bPelds. They both take the form of a system of coupled
stochastic neural Peld equations
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dus(t) =| —up+ Y wyexf () [dt+ YZdWa(x.t),
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spatial correlations using a cosine shaped correlation function
Cj(x) = j cosk/ ), along with correlated noise component
with a cosine proble s€.(x) = .cosk/ ). In both these
cases, in the limit . — 0, there are no interlaminar noise
correlations, and in the limit; — max( 1, »), noise in each
layer is maximally correlated.

Ill. DUAL LAYER EXCITATORY NETWORK

A. Coupled front propagation

To begin, we examine a network of two coupled excitatory
layers, which individually produce propagating fronts. This
analysis should be contrasted with that36][ which explored
fronts coupled with depressing inhibition as a means of
modeling binocular rivalry waves. We will start by considering
the noise-free case and allow the interlaminar connectivity to
be arbitrarily strong, so we take— 0 while v, andwg; can
be any value.
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FIG. 1. (Color online) (a) Speedand (b) position parameter
of coupled traveling frontsl@) as determined by the implicit system
(13). Noticea = 0 whenwg; = w,. Threshold = 0.4.

FIG. 2. (Color online) Evolution of coupled front$3) in space-
time. (a) Wherwg = w,; = 0.1, fronts propagate at the same speed
with the same threshold crossing poixi(t) (solid line), where
ur(Xe(t),t) = ux(xc(t),t) = . (b) Whenwg, = 0.1 andwg; = 0.01,
the crossing poink;(t) of the front in the brst layem; (x,(t),t) =
(solid line) stays ahead of the crossing pois(t) (dashed line) of the
front in the second layar,(X,(t),t) =
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so excitatory couplingw&> 0) between layers increases the
speedc of both fronts. Finally, in the limitvg 0, there are
two decoupled fronts, both with spee¢ 1/ (2 ) S 1. Thisis
the limit from which we will build our theory of stochastically
driven coupled fronts.

In the limit vg O, the fronts {2) are neutrally stable
to perturbations in both directions. To see this, we consider
the perturbed front solutions; (
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FIG. 3. (Color online) (a) Uncoupled frontg andu, propagat-
ing in the dual layer stochastic neural Peld have leading edges (solid
and dashed lines, respectively) that spread apart due to separate
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where the associated diffusion coefpbcients of the variance
are

_ S5 1) 1 9)G (x — yydx dy
- o0 , 2

[ [T 10U/ (x)dx]
forj = 1,2, and covariance is described by the coefpbcient

S [T 1) 2(y)Ce(x — y)dx dy
[/ 100UL00dxX][ /72, 20)U5(x)dx]’

With the stochastic systen2?) in hand, we can show how
coupling between layers affects the variability of the positions
of fronts subject to noise. To do so, we diagonalize the matrix
K =V V~1with right eigenvector matrix

- ),

and =diag( 1, »). Front positions (1, »)" are neu-
trally stable (1 = 0) to perturbations in the same direction
vi = (1,1)" and stable [, = —( 1 + 2)] to perturbations in
opposite directions, = ( 1, — 2)T.

We now show how coupling leads to a time-varying mean
in A(t) as opposed to the case of bum@@0][ With the
diagonalizatiork =V V™1, assumingA(0) = 0, the mean
(AQ) = [, t-9ds, so

(A) = At +B (1 —e (12
T \At—B ,(1—e (1t )"

Dj (28)

D¢ =

where A= 1221 B— _1-2  and we have used the
1+ 2 (1+ 2)

diagonalizatiore®! = Ve! V-1, Since ;= —( 1+ 2)< 0,

. At +B ;

so the net mean effect of weak coupling is to slightly increase
the wave speedXt) and potentially alter the relative position
of the fronts B). We would expect this, based on the speeding
up of fronts observed in our deterministic analysis. Note that
if 1= »,thenB = 0 and the fronts will have the same mean
position.

To understand the collective effect that noise and coupling

) =
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using (L2) (see als046,47)):

eS : > 0
U ()= oy 2 (33)
S (1S2 T .
1s (_184_)e152 + 1se4 :
and we differentiate33) to yield
SeS : > 0
U. ( ) = v 2 (34)
J S 2 (1S2 .
SJ1§4_28T§T + 1se4 : <0

Now, we can solve explicitly for the null vectors af .
Plugging @3) and @4) into (21), and using the derivative

d s 1. O _ O
EH[UJ'()S ]-m——

in the sense of distributions, we bPnd that each of the two
equations in the vector systdm = Ois

d 0
S

(39)

j -
c—L+ =
d

j w(y) j(y)dy, j =12 (36)

where
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FIG. 5. (Color online) Effects of cosine correlated noise
[C; (x) = cosk)] on propagation of coupled fronts. Theory given
by (42). As the strength of identical reciprocal coupling= , =
is increased, the variance of front positipn, (t)(
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Thus, we can integrate the two equatior&)(and ap-
ply the threshold condition&J;
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FIG. 9. Pulse widtla; = a, = a as a function of the asymmetry

of the local weight functionsvi(x) = w,(x) = cosk S ) for
varying amplitudes of reciprocal symmetric strength ¥ W,; =
. Increasing the strengtiv, ghifts the saddle-node bifurcation,
at which the stable (solid) and unstable (dashed) branches of pulse
solutions, to the right in . Other parameter = 0.4.

neuronal network that supported fronts. Essentially, pertur-
bations must obey16), which has an eigenvalue = 0
associated with the eigenfunctith for each layej = 1,2.

As in the case of traveling fronts, coupled pulses are still
neutrally stable to perturbations that move them in the same
direction. However, we will now show that coupling layers
stabilizes pulses to perturbations that pull them in opposite
directions.

B. Noise-induced motion of coupled pulses

Now, we analyze the effects of weak noise on the
propagation of pulses in the presence of reciprocal coupling
that is weak Wi2,W1 = O( ¥2)] and local coupling that
is identical (vi1 = wy, = w). To start, we presume noise

causes each pulseOs position to wander, described by stochastic

variables (t) and (t), and each pulseOs proble Ructuates,
described by the stochastic variableg(x,t) and »(x,t).

As in the case of coupled traveling fronts, this is described
by the expansion given by the ansat8) Plugging this
into (1) and expanding in powers ofY?, we bnd the
pulse solution atO(1) wherewg, = W, 0. At O( Y?),

we Pnd the system10) with associated linear operator
L given by @O0), as we found for the excitatory network
with fronts. Next, we apply a solvability condition td9),
where the inhomogeneous part must be orthogonal to the null
space of

Scp Sp+f (U)w(Sx) p(x)]

Scq $q+f UIWEX) qe] | )

L p=
where p = (p(x),q(x))". It is important to note that an
asymmetric weight functiow(x), like (3), leads to a slightly
different form forL , now involving terms such as(Sx)
p(x)= & w(y S x)p(y)dy. Again, we can decompose the
null space ofL into two orthogonal elements that take
the forms (1,0)" and (Q ,)". Rearranging the resulting
solvability condition shows that the stochastic vectdt) =
( 1(t), 2()" obeys the multivariate Ornstein-Uhlenbeck
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FIG. 10. (Color online) Effects of cosine correlated noise
[C;j (x) = cosfk)] on propagation of coupled pulses. Theory (solid
line) computed usingd@) matches numerical computations (dashed
line) fairly well. As the strength of identical reciprocal coupling

1= »,= Is increased, the variance of pulse positiorn(t)?)
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two-dimensional space. Our analysis could then lend insight ACKNOWLEDGMENTS
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