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h i g h l i g h t s

� We study bumps in multilayered neural fields with delayed coupling between layers.
� Delayed coupling stabilizes bumps to translating perturbations.
� Delay-induced stabilization of bumps reduces their diffusion, due to stochastic forcing.
� Diffusion reduction due to delays can be approximated using a small delay expansion.
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a b s t r a c t

We study the effects of propagation delays on the stochastic dynamics of bumps in neural fields with
multiple layers. In the absence of noise, each layer supports a stationary bump. Using linear stability
analysis, we show that delayed coupling between layers causes translating perturbations of the bumps to
decay in the noise-free system. Adding noise to the system causes bumps to wander as a random walk.
However, coupling between layers can reduce the variability of this stochastic motion by canceling noise
that perturbs bumps in opposite directions. Delays in interlaminar coupling can further reduce variability,
since they couple bump positions to states from the past. We demonstrate these relationships by deriving
an asymptotic approximation for the effective motion of bumps. This yields a stochastic delay-differential
equation where each delayed term arises from an interlaminar coupling. The impact of delays is well
approximated by using a small delay expansion, which allows us to compute the effective diffusion in
bumps' positions, accurately matching results from numerical simulations.

' 2014 Elsevier B.V. All rights reserved.

1. Introduction

Delays commonly arise in dynamical models of large scale neuronal networks, often accounting for the detailed kinetics of chemical or
electrical activity [1]. The finite-velocity of action potential (AP) propagation can lead to delays on the order of milliseconds between AP
instantiation at the axon hillock and its arrival at the synaptic bouton [2]. Similar propagation delays have been observed in dendritic APs
propagating to the soma [3]. Furthermore, synaptic processing involves several steps including vesicle release, neurotransmitter diffusion,
and uptake, so the chemical signal communicating between cells is effectively delayed [4]. However, computational models of large scale
networks that describe all these processes in detail are unwieldy, not admitting direct analysis, so one must rely on expensive simulations
to study their behavior [5]. An alternative approach is to develop mean field models of spiking networks that incorporate delay that
accounts for these microscopic processes [6].

Neural field equations are a canonical model of large scale spatiotemporal activity in the brain [7]. Many studies have explored the
impact of delays on the resulting spatiotemporal solutions of these equations [8�10]. One common observation is that the inclusion of
delays can lead to oscillations via a Hopf bifurcation in the linear system describing the local stability of solutions to the delay-free system:
Turing patterns [10], stationary pulses [11,12], and traveling waves [6,13]. Thus, a major finding across many studies of delayed neural field
equations is that delay will tend to contribute to instabilities in stationary states [14]. Recent work has shown that in stochastic neural field
models, delay can stabilize the system near bifurcations [15]. This distinction has been explored extensively in control theory literature:
delayed negative feedback loops can induce instability while delayed positive feedback can augment stability [16]. In this work, we further
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explore the potential stabilizing impact of delays in neural field models. Specifically, we focus on the case where positive feedback between
two layers of a neural field help stabilize patterns to noise perturbations.

We will focus specifically on a multilayer neural field model that supports bump attractors [17]. Persistent spiking activity with a
``bump'' shape is an experimentally observed neural substrate of spatial working memory [18,19]. The position of the bump encodes
the remembered location of a cue [20]. Noise degrades memory accuracy over time [21], due to diffusive wandering of bumps across
the neutrally stable landscape of the network [22]. Several mechanisms have been proposed to limit such diffusion-induced error: short
term facilitation [23,24], bistable neural units [25,26], and spatially heterogeneous recurrent excitation [27,28]. Recently, we showed
interlaminar coupling, known to exist between the many brain areas participating in spatial working memory [29], can also help to reduce
bump position variability due to noise cancellation. Here, we show that delays in the interlaminar coupling further reduce the long term
variability in bump positions. Essentially, this occurs because each layer is constantly coupled to past states of other layers, states that
have integrated noise for a shorter length of time than the current state.

The paper is organized as follows. In Section 2, we introduce the multilayer neural field model with delays and noise, showing they take
the form of a delayed stochastic integrodifferential equation. Section 3 then explores how delays impact the local stability of stationary
bumps in a dual layer neural field, in the absence of noise. Essentially, we demonstrate the delay reduces the impact of translating
perturbations to the bump solution, underlying the mechanism of position stabilization. This motivates our findings in Section 4, where
we derive effective stochastic equations for the motion of bump solutions subject to noise, showing they take the form of stochastic delay
differential equations. A small delay expansion allows us to compute an effective variance, which is shown to be reduced by increasing the
delay in coupling between layers. Lastly, we extend our results in Section 5, showing similar results hold in stochastic neural fields with
more than two layers, and the effective variance decreases with the number of layers.

2. Laminar neural fields with delays and noise

2.1. Dual layer neural field with delays between layers

We model a pair of reciprocally coupled stochastic neural fields, accounting for the propagation delay between layers as:

du1.x; t / D

� u1.x; t / C

 �

� �
w.x � y/f .u1.y; t //dy C

 �

� �
w12.x � y/f .u2.y; t � �12.x; y///dy


dt C "dW1.x; t /; (1a)

du2.x; t / D

� u2.x; t / C

 �

� �
w.x � y/f .u2.y; t //dy C

 �

� �
w21.x � y/f .u1.y; t � �21.x; y///dy


dt C "dW2.x; t /; (1b)

so uj.x; t / is the total synaptic input at location x 2 T� �; �Uin layer j. The effects of synaptic architecture are given by the convolution
terms, so w.x � y/ describes the polarity (sign of w) and strength (amplitude of w) of recurrent connectivity within a layer. Typically,
bump attractor network models assume spatially dependent synaptic connectivity that is lateral inhibitory [22], such as the cosine

w.x � y/ D cos.x � y/; j D 1; 2; (2)

but our analysis will apply to the general case of any even weight function. Synaptic connections from layer k to j are described by the
kernels wjk.x � y/. To compare our analysis with numerical simulations, we will use the cosine coupling

wjk.x � y/ D M j cos.x � y/; k 6Dj; (3)

where M j specifies the strength of coupling projecting to the jth layer.
Another feature of long range coupling is that the activity signals can take a finite amount of time to propagate from one neuron to the

next [30,3,31]. Thus, delay is incorporated into the connectivity between layers through the spatially dependent functions �jk.x; y/ [32,
10,9,6
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Fig. 1. (A) Profiles of the coupled stable bump solutions .U1.x/;U2.x// are identical (solid curves) when coupling strength is symmetric ( w12.x/ D w21.x/ � cos.x/).
However, when layer 1 receives stronger coupling than layer 2 ( w12.x/ D 1:4 cos.x/; w21.x/ D 0:6 cos.x/), the bump in layer 1 ( U1.x/) is larger than that in layer 2 ( U2.x/)
(dashed lines). Threshold (thin line) � D 0:5. (B) As the threshold � is increased, the wide (solid) and narrow (dashed) solution branches vary until coalescing in a saddle�node
bifurcation (filled dot). Half-widths a and b are identical when coupling is symmetric ( M1 D M2 � 1 and 1M D M1 � M2 D 0). Notice the stable and wide branch of solutions
increases width when layer 1 receives more input ( M1 D 1:4 and M2 D 0:6). Local connectivity w.x/ D cos.x/.

Now, we analyze linear stability by studying the evolution of small, smooth, and separable perturbations to the bumps given by the
functions " j.x; t / ." � 1/; j D 1; 2. We derive this linearization by employing the expansion

u1.x; t / D U1.x/ C " 1.x; t / C O."2/;

u2.x; t / D U2.x/ C " 2.x; t / C O."2/: (10)

Plugging this expansion into (1), in the absence of noise (d Wj � 0; j D 1; 2), and truncating to O."/, we find . 1.x; t /;  2.x; t // satisfy
the system

P 1.x; t / D �  1.x; t / C
 �

� �
w.x � y/f 0.U1.y// 1.y; t /dy C

 �

� �
w12.x � y/f 0.U2.y// 2.y; t � �12.x; y//dy;

P 2.x; t / D �  2.x; t / C
 �

� �
w.x � y/f 0.U2.y// 2.y; t /dy C

 �

� �
w21.x � y/f 0.U1.y// 1.y; t � �21.x; y//dy; (11)

where P j D @t j.x; t / .j D 1; 2/. We can immediately identify the neutrally stable solution given by the derivative . 1.x; t /;  2.x; t // D
.U0

1.x/;U0
2.x// by simply plugging this ansatz into (11) to yield

0 D � U0
1.x/ C

 �

� �
w.x � y/f 0.U1.y//U

0
1.y/dy C

 �

� �
w12.x � y/f 0.U2.y//U

0
2.y/dy;

0 D � U0
2.x/ C

 �

� �
w.x � y/f 0.U2.y//U

0
2.y/dy C

 �

� �
w21.x � y/f 0.U1.y//U

0
1.y/dy: (12)

The fact that (12) holds can be seen by differentiating the system (7) and using integration by parts to rearrange the integral terms. Similar
results have been founded in linear stability analyses of non-delayed neural field equations, and they typically imply that perturbations
that translate solutions in precisely this way will neither grow nor decay [37,38,27]. However, we will demonstrate that this result is
misleading in the delayed case. In fact, instantaneous perturbations of this form may decay, and the stabilizing impact of propagation
delays relies on this subtle difference.

To analyze the dynamics of (11) in more detail, we first simplify the system, assuming a Heaviside firing rate function (4). This allows
us to examine the dynamics of the perturbations  1 and  2 at single points x D � a and x D � b respectively. In this case, we can compute

f 0.U1/ D 
aT�.x � a/ C �.x C a/U; f 0.U2/ D 
bT�.x � b/ C �.x C b/U;

where


 � 1
a D jU0

1.a/j D j U0.� a/j D w.0/ � w.2a/ C w12.b � a/ � w12.a C b/;


 � 1
b D jU0

2.b/2
. b

/ w.0/
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Fig. 2. (A) Response of bump solution (8) of the system (1) to an instantaneous shift perturbation (dashed line) ��
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Identifying the nullspace .q1.x/; q2.x// of L� , we can ensure (23) is solvable by taking the inner product of both sides of the equation with
this vector to yield the equation

q1; "
� 1d1U0

1 C dW1 C "� 1

 �

� �
w12.x � y/f 0.U2.y//U

0
2.y/.�.t / � �.t � �12.x; y///dydt


C


q2; "

� 1d1U0
2 C dW2 C "� 1

 �

� �
w21.x � y/f 0.U1.y//U

0
1.y/.�.t / � �.t � �21.x; y///dydt


D 0;

defining the L2 inner product hu; vi D
 �

� � u.x/v.x/dx for any L2 integrable functions u.x/ and v.x/. Therefore, the stochastically evolving
bump position �.t / obeys the delayed stochastic process:

d�.t / D �12.�.t � �12.x; y///dt C �21.�.t � �21.x; y///dt � .N�11 C N�22/�.t /t /y11(27)41 Tf 7.291 0 Td [(.)]TJ7-rocess:.2055 Tf 3.568 0 Td [(�oTd [(�)]TJ/F121 9.5641 Tf 7.291 0 Td [8v n9.58vtes.4)]T8396J/F121 9..8TJ/F42 8.201
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4.3. Calculating nullspace: dual layers

To compute the effective variance
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Fig. 4. Effective diffusion D approximated for hard delays �12 D �21 � N� and symmetric coupling w12.x/ D w21.x/ D cos.x/. (A) Variance h�.t /2 i D Dt in the position of
coupled bumps in a dual layer network coupled with delays (1) is calculated assuming weak noise and a small delay expansion (38). Both our theoretical prediction (solid
lines) and numerical simulations (dashed lines) reveal that the effective variance increases more slowly for longer propagation delays N� . (B) Effective diffusion D decreases
as a function of hard delay N� in our asymptotic theory (solid line) and numerical simulations (circles). Threshold � D 0:5, no noise correlations ( cc � 0), noise amplitude
" D 0:5. Variances are computed from numerical simulations using 5000 realizations each.

Fig. 5. (A) The impact of asymmetric hard delays N�21 6D N�12 D 1 on the variance h�.t /2 i is still well characterized by our theoretical prediction (solid lines) given by
(32) as matched by numerical simulations (dashed lines). (B) Our theory (solid lines) predicts variance increases as the amplitude of noise correlations cc between layers
increases (38). Threshold � D 0:5; noise amplitude " D 0:5; baseline delay N� D 0; interlaminar connectivity w12.x/ D w21.x/ D cos.x/. Variances are computed from 5000
realizations each.

We consider a few different cases of the distance- and layer-dependent delay function Q�jk.x; y/. We begin by considering the case where
delays are homogeneous in space (hard delays), so �jk D N�jk , and (37) reduces to

Tjk D
2 sin a sin b
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Fig. 6. Distance-dependent delays �jk .x; y/ D �d [1 � cos.x � y/] between layers, .j; k/ D .1; 2/ or .2; 1/, also can stabilize bumps to noise perturbations. Our theoretical
calculations (solid lines) suggest that increasing the maximal delay �d further reduces the effective diffusion (39), which compares well with numerical simulations (dashed
lines). Threshold � D 0:5; noise amplitude " D 0:5; baseline delay N� D 0; interlaminar connectivity w12.x/ D w21.x/ D cos.x/. Variances are computed from 5000
realizations each.

baseline delay N� and delay increases with distance jx � yj. In this case, (37) reduces to

Tjk D
2.N� C �d.1 � cosa cosb// sin a sin b

M � 1
1 [1 � cos.2a/] C 2 sin a sin b C M � 1

2 [1 � cos.2b/] C 2 sin a sin b
; j D 1; 2I k 6Dj:

Now, for simplicity, we again focus on the symmetric case ( M1 D M2 D M so a D b) to make the effects of distance-dependent delay most
transparent in resulting formulas. In this case T12 D T21 D T , and

T D
M .N� C �d sin2 a/

2.
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In the symmetric case M jk � M ; 8j; k, then aj � a; 8a, and

� D 2.1 C .N � 1/M / cos.a/ sin.a/;

which can be solved to yield a wide ( aw) and narrow ( an) bump pair

aw D
�

2
�

1

2
sin � 1 �
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delays are inherited by the stochastic variable �.t / for the bump's position. We enforce solvability of (54) by requiring the right hand side
is orthogonal to the null space of the adjoint linear operator

L� p.x/ D



� p1 C f 0.U1/

 �

� �
w.x � y/p1.y/dy C


k6D1

 �

� �
wk1.x � y/pk.y/dy


:::

� pj C f 0.Uj/

 �

� �
w.x � y/pj.y/dy C


k6Dj

 �

� �
wkj.x � y/pk.y/dy


:::

� pN C f 0.UN/

 �

� �
w.x � y/pN.y/dy C


k6DN

 �

� �
wkN.x � y/pk.y/dy





; (55)

for any L2-integrable vector p.x/ D .p1.x/; : : : ; pN.x//
T , derived using the inner product definition (26). Upon computing the nullspace

q.x/ D .q1.x/; : : : ; qN.x//
T of L� , we can generate the solvability condition by taking the inner product of both sides of (54) with q.x/ to

yield

N
jD1


qj; "

� 1d1U0
j C dWj C "� 1


k6Dj

 �

� �j x0dxj.x 0
jCx x . .j 
 -512.258 0Td365 -21.4x. x 1j. j
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Keeping only terms larger than O.� 2
jk/, we find (57) becomes

d�.t / D �


N

jD1


k6Dj

Tjk


d�.t / C

N
jD1

dWj :

Simplifying, we find

d�.t / D

N
jD1

dWj

1 C
N

jD1


k6Dj

Tjk

;

so the mean h�.t /i D 0 and the variance

h�.t /2i D

N
jD1

N
kD1

Djk
1 C

N
jD1


k6Dj

Tjk

2
t : (59)

As before, delays will rTd [(1)]TJ/F123 6.6948 Tf 3.017 0 TdJ/F42 pg 0 G42 plong/F42 pgTo5641 Tf -2.704 -2.019 Td [(P)]TJ/F42 5.8022 Tf -0.132 -15.718 Td [(j)]TJ/F120 6.6948 Tf 1.677 0 Td [(D)]TJ/F23 5.8022 Tf 5.222 0 Td [(1)]TJ/9.5641 Tf -2.704 -2.019 Td [(P)]TJ/F42 5.8022 Tf -0.132 -15.718 Td [(j)]TJ/F120 6.6948 Tf 1.677 0 Td [(D)]TJ/F23 5.8022 Tf 5.222 0 Td [(1)]TJ/F42 5.8022 Tf 8.459 17.737 Td [(N)]TJ/F1.39.2662 -15.7176 -43.932 Td [(As)-197(before,)-197(delays)-197(will)-196(rTd [(1)]TJ/F123 6.6948 Tf 3.017 0 TdJ/F42 pg 0 G42 plong/F42 pgTo5641 Tf -2.704 -2.019 T496(rPyO 5.7.hassF42 pgTo5641 Tf -2.704 -2.2 pg 0[tTd [(j)]TJ/F120 6.6948 Tf 1.677 0 Td [(D)]TJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/F23 5.8022 uJ/FF[(k)]TJ04 Td [(A1 Tf -2.704 -2.0si22 uJ/F23J/F23 5.numberF23 5.ofF23 5.8ayers)]TJ/F23 5.8022 Tf 6]0 02o5641 Tf N2.704 -2.2 pg 0[tTd48 545 Td [(D 5.8022 7(fur3J/rF23 5./F23 5.677 0 Td [(D)]TJ/F23 5447.251)]T9 T60 J 0.4J/F23 5..d [(jk)]TJ
ET
q
1 0 0 123 5.8022 Tf 0/F423 2.8022 u(j).)5.80(Calculati22 u752 nullspace:D)]TJ/Fultipl 5.752 8ayers)]TJ 5.8022 Tf -0.132 -15.718 Td [(j11(P)5/F42.63717 Td [ow/F123 9t77 0 Tdcompute.8022 Tf 5.752 -1.435 Td [(jk)0.5TJ/[(D)]-50r-0.10.5TJ/[(D)]-50R23 [.752 .6948 Tf 1.677 0 Td [(DTd /F123 9.5641 Tfmust641 Tfident(N).8022 Tf 5.752 nullspace5.752 ofF2022 Tf 5.752 adjoint641 Tfoperator 8.459 17.737 Td [(N).321695 Td [(DL48 Tf 1.677 0 Td [(D TdTJ/3.472
/F123 9.3d [(jk)0.5TJ/[(D)]-50r-0.10.5TJ/[(D)]-50R23)-197(before,)-19058 -2.472
/F123 99485Tf 1.677 0 Td [(DTd /F123 9.hich641 Tfobe2 uJ022 Tf 5.752 systemd [(jk)]TJ
ET
q
1 0 0 123 5.8022 Tf - -5.5T3/F4 -249.2662 q23 6.6948 Tf 3.017 4.01156 Td [(N)]TJ5641 Tf 109.345 544.241 T8  Td [(N)]TJ]TJ/F23 8.2889 Tf 6.628 -16.297 Tx641 Tf 109.345 544.24.0-16.297 Td [(D)]TJ/F23 5.8022 ys)6.6948 Tf DTJ/F23 8.2889 Tf 6.T9 1J/F23 5.80f48 Tf 1.677 0 Td [(D321652.422 9.1920641 Tf 109.345 544.22.306 -2.704 -2.0]TJ/F23 8.2889 Tf 6.628 -16.297 TU022 Tf 5.222 0 Td [(10 T56 Td [(N)]TJ5641 Tf 109.345 544.241 T8  Td [(N)]TJ/97(delays)-197(will)-1960 ays)-J/F42 5"97(d -0.1 -2.280 J 0.4Z641 Tf 1097 0 Td [(D9Td /F4258-43.932 T3148 Tf 1.677 0 Td [(D-022dela9.002
/F123 9.0641 Tf 1097 0 Td [(D/F42 5.8022 T T3148 Tf 1.41 Tf -2.704 -778/F1.6/F42 5.w)-300]TJ/F23 8.2889 Tf 6.T9 8545 Td [(Dx [(D)]TJ/F23 5.8022 ysJ/[(/F123 9.0641 Tf 8.2889 Tf 6.23 8[(/F123y641 Tf 109.345 544.24.).316.297 Td [(D)] 8.2889 Tf 6.628 -16.297 Tq23 6.6948 Tf 3.017 4.01156 Td [(N)]TJ5641 Tf 109.345 544.241 T8  Td [(N)]TJ]TJ/F23 8.2889 Tf 6.628 -16.297 Ty641 Tf 109.345 544.24.).316.297 Td [(D)]-2.2 pg 0[tTd 28 -16.297 Td)]TJ/F23 5.8022 Tf 6.63216.297 Ty641 Tf 1/F23 5.8022 ys4695 Td [(DC97(delays)-197(will)23 8[(9.08717 Td XTf -0.132 -15.718 Td 967ela9.55520 6.6948 Tf 1.677 0 Td [(D)]TJ/F23 5.8022 Tf 5.222 5.222 0 Td [(1)]TJ/9.5641 Tf -2.704 -2.019 Td -0.10942348717 Td Z641 Tf 1097 0 Td [(D9Td /F4258-43.932 T3148 Tf 1.677 0 Td [(D-022dela9.002
/F123 9.0641 Tf 1097 0 Td [(D/F42 5.8022 T T3148 Tf 1.41 Tf -2.704 -778/F1.6/F42 5.w)f -0.132 -15.718 T7.T3/F Td [(N)]TJk [(C)]TJ/F42 5.8022 TTJ/F23 5.805641 Tf 109.345 544.241 T8  Td [(N)]TJ]TJ/F23 8.2889 Tf 6.628 -16.297 Tx641 Tf 1/F23 5.8022 ysJ/[(/F123 9.0641 Tf 8.2889 Tf 6.23 8616.297 Ty641 Tf 109.345 544.24.).316.297 Td [(D)] 8.2889 Tf 6.628 -16.297 Tq23 6.66 -43.932 Td [(01156 Td [(N)]TJk641 Tf 109.345 544.241516  Td [(N)]TJ]TJ/F23 8.2889 Tf 6.628 -16.297 Ty641 Tf 109.345 544.24.).316.297 Td [(D)]-2.2 pg 0[tTd 28 816.297 Td)]TJ/F23 5.8022 Tf 6.63216.297 Ty641 Tf 139.345 544.24.).31ays)-J/F42 5#641 Tf 109.345 544.27.533elays)-J/F42 5;.677 0 Td [(D)]TJ/F23 5266.66/FF42380 J 0.4-2.70 0/F2.785 J 0.4-2.70 0/F2.785 J 0.4-2.70jk)]TJ
ET
q
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Fig. 7. Effective variance h�.t /2 i in the stochastic motion of bumps in the multilayer stochastic neural field (6). We demonstrate how the variance decreases with the
number of layers N. Our theory (solid lines) reveals that N reduces variance in a divisive way, also scaling the impact of hard delays N� (64), which matches well with
numerical simulations (dashed lines). Threshold � D 0:5; noise amplitude " D 0:5; delay N� D 0:5; interlaminar connectivity wjk D cos.x/; 8j; k 6Dj. Variances are
computed from 5000 realizations.

Utilizing the formula for 
j given by (46), we can write (62) as

Aj


k6Dj

.wjk.ak � aj5 RG
 [-250((62))]TJ
0 g 0 6E935
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have also extended our previous work by addressing the impact of strong interlaminar coupling upon the stochastic dynamics of bumps,
rather than utilizing perturbation theory to explore weak coupling [17].

Our work here could be extended in a number of contexts, particularly those concerning the impact of delays on spatial patterns in
stochastic neural field equations. First, we plan to explore how propagation delays impact stability of bumps and other patterns in the
vicinity of bifurcations. As we have shown here, lateral inhibitory deterministic neural fields tend to support two co-existent branches
of stationary bump solutions, a stable wide bump and an unstable narrow bump, which annihilate in a saddle�node bifurcation [22,9].
Delays may extend the region in which a stable stationary bump exists in the deterministic system, lengthening the amount of time it
would take for noise to generate a rare event whereby the bump is extinguished as in [27]. We will likely need to develop a stochastic
amplitude equation approach to study this problem as in [46,47]. In addition, we plan to explore the impact of delays on propagating
patterns, such as traveling waves [45]. It is questionable whether or not delays will make wave propagation more reliable, since it may
lead to instabilities, as in [12,13].
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