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when the weight distribution w.x/ is given by a so-called Mex-
ican hat function with the following properties: w.x/ > 0 for
x 2 T0; x0/ with w.x0/ D 0; w.x/ < 0 for x 2 .x0;1/; w.x/
is decreasing on T0; x0U; w.x/ has a unique minimum on RC at
x D x1 with x1 > x0 andw.x/ strictly increasing on .x1;1/. On the
other hand, in the case of a purely excitatory network withw.x/ a
positive, monotonically decreasing function, any bump solution is
unstable and tends to break up into a pair of counterpropagating
fronts. Following Amari’s original analysis, the study of bumps in
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Fig. 1. Stationary bumps in a networkwith synaptic depression. (a) Plots relating bumpwidth a to amplitude of synaptic depression� for different values of � using Eq. (2.6).
We take the parameter � D 20. Stability analysis based on the piecewise smooth approach (Section 2.3) establishes that bumps along the dashed portions of the existence
curves are unstable; the solid curves indicate bumps that appear to be numerically stable. The Evans function approach predicts that the whole of the upper branch is stable.
(b) Bump profile when � D 0:2 and � D 0:01.
state solution for U.x/ and evaluating the integral yields

U.x/ D
1

.1C ��/

�
.xC a/e�jxCaj � .x� a/e�jx�aj

�
:

Applying the threshold conditions U.�a/ D � , we arrive at an
implicit expression relating the bump half-width a to all other
parameters:
2a

.1C ��/
e�2a D �:

The transcendental equation (2.6) can be solved numerically using
a root finding algorithm. The variation of pulse width with the
parameters � and � is shown in Fig. 1; the stability of the
bumps is calculated below. It is important to note that the
threshold-crossing conditions (2.6) are necessary but not sufficient
for existence of a bump. A rigorous proof of existence, which
establishes that activity is superthreshold everywhere within the
domain jxj < a and subthreshold for all jxj > a, has not been
obtained except in special cases [6]. However, it is straightforward
to check numerically that these conditions are satisfied.

2.2. Stability of bumps: Evans function approach

A popular approach to analyzing the stability of stationary
bumps in neural field models is to linearize about the bump
solution and derive an Evans function, whose roots represent the
spectrum of the associated linear system [10]. Thus, it is tempting
to try to calculate the Evans function of the bump solutions (2.6),
find its roots, and use these to make statements about the linear
stability of the bump. However, the steps necessary to linearize the
system (2.1) when f D � are not well defined, due to the exposed
Heaviside function in Eq.
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The resulting spectral problem
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Fig. 2. Eigenvalues associated with respect to shift perturbations (cases (i) and (ii)). (a) Nonzero eigenvalue for various �
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Fig. 6. Different sized perturbations of a bump. (a) Expanding a side of the bump. Zoomed-in version of the bump .U.x/;H.x// is shown along with perturbed solutions
u1.x/ D U.x/ C  1.x/ and u2.x/ D U.x/ C  2.x/ with  i.x/ > 0. While u1 satisfies the three threshold crossings on this side, u2 does not, due to the condition
u2.a C �aC/ D h0 C � being violated. (b) Contracting a side of the bump. Here, u1.x/ D U.x/ �  1.x/; . 1.x/ > 0/ still satisfies all three threshold crossing, but
u2 D U �  2; . 2 > 0/ does not, due to u2.c C�Cc / D h0 being violated. Parameters are h0 D 0:04, � D 0:1, � D 0:16.
a b

Fig. 7. Effects of perturbations on the excited region RTUU. (a) Zoomed-in version of the bumpU.x/;H.x/ shows the accompanying excited region RTUU (black bar). Expanding
a side of the bump to the perturbed form u1.x/ D U.x/C  1.x/; . 1 > 0/will widen both subdomains of the excited region RTu1U (grey bars). (b) Contracting a side of the
bump to the perturbed form u1.x/ D U.x/� 1.x/; . 1 > 0/ shrinks both subdomains of the excited region RTu1U (grey bars). Parameters are h0 D 0:04, � D 0:1, � D 0:16.
sys.me0 .4 RG
 with sy425(sy425ith)-521insy.ing
where g.x/ D xe�jxj. Also note

H.x/ D
�
h0 C �; jxj > b;
h0; jxj < b; (3.7)

implying that, as in the case of the network with depression, the
negative feedback variable here will have a jump discontinuity.
Applying the bump threshold conditions (3.4)�(3.6), we arrive at
an implicit system relating the bumphalf-widths a; b; c to all other
parameters

g.aC c/� g.aC b/C g.2a/C g.a� b/� g.a� c/ D h0 C �;
g.bC c/� g.2b/C g.bC a/� g.b� a/� g.b� c/ D �; (3.8)
g.2c/� g.c C b/C g.c C a/� g.c � a/C g.c � b/ D h0:

The system of transcendental equations (3.8) can be solved
numerically using a root finding algorithm. The variation of pulse
widthwith the parameters � and h0 is shown in Fig. 5. The stability
of the bumps is calculated below.

3.2. Stability of bumps

As in the case of networks with sy425(sy425ith)-521insy425(
sy425ith)-521d [(/)]TJ/F150 9.5641 Tf 5.6’he
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Fig. 8. Plot of eigenvalues arising from perturbations of a bump solution as a function of (a) � with h0 D 0:04, and (b) h0 with � D 0:16. In both plots, the positive eigenvalue
associated with a shift perturbation is always larger than that associated with an expansion/contraction. Other parameters are � D 0:1 and � D 1. Varying � has the effect
of merely scaling the eigenvalues, but not changing their sign.
u.�bC ��b
�
.t/; t/ D �; (3.11)

u.�c C ��c
�
.t/; t/ D h.�c C ��c

�
.t/; t/;

for an initial time interval following the perturbation t 2 .0; T /.
The linear theory will only be valid until the time T that the
existence threshold conditions are violated. It is straightforward
to Taylor expand the expressions in (3.11), truncate to first order
in �, and solve for the terms

�a
�
.t/ � �

 .�a; t/� ’.�a; t/
jU 0.a/j

;

�b
�
.t/ � �

 .�b; t/
jU 0.b/j

; (3.12)

�c
�
.t/ � �

 .�c; t/� ’.�c; t/
jU 0.c/j

:

It is important to note that an infinitesimal shift of the point at
which u crosses � is not equivalent to shifting the boundary of the
outer region of the excited region of u, due to the discontinuity in
H.x/. As shown in Fig. 7, infinitesimal perturbations of the bump
lead to changes in the excited region of u in a neighborhood of x D
�a;�c but not x D �
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Fig. 9. Instabilities of a stationary bump solution given by Eqs. (3.6) and (3.7). (a) Space�time plot of a bump destabilizing to form a traveling pulse for � D 1:0; � D 0:16.
The activity u.x; t/ evolves from an initial bump solution that is perturbed by a small rightward shift at t D 5. (b) Space�time plot of a bump destabilizing to form a spatially
localized breather for � D 1:2; � D 0:16. The activity u.x; t/ evolves from an initial bump solution that is perturbed by an expansion at t D 5. Other parameters are � D 0:1,
h0 D 0:04.
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Fig. 10. Snapshots of a bump destabilizing to a traveling pulse at successive times t D 5; 5:5; 6; 10 (top to bottom) for � D 1:0, and � D 0:16. Both u.x; t/ (solid black
curves) and h.x; t/ (black squares) are shown in full view (center column), at the trailing edge (left column), and at the leading edge (right column). Also shown are the initial
conditions of the bump for U.x/ (solid grey curve) and H.x/ (dashed grey curve). Eventually, the threshold crossings u.aC�a

C
; t/ D h0 C � and u.�c C�c�; t/ D h0 . Other

parameters are h0 D 0:04, � D 0:1.
breather begins contracting once the threshold h becomes higher
in amplitude than u at the pulse edge. The oscillation amplitude of
the breathing solution decreases as � decreases. Finally, in Fig. 12
we showan example of a shift perturbation destabilizing a bump in
the case of stronger adaptation (larger �). In this case the traveling
pulse crosses threshold at five locations, rather than four points as
in Fig. 10.

4. Discussion

In this paper we analyzed the linear stability of stationary
bumps in a piecewise smooth neural field model with either
synaptic depression or spike frequency adaptation. In both
cases, stability analysis based on the construction of an Evans
function breaks down in the high-gain limit. In the case of
synaptic depression, we found that sufficiently strong synaptic
depression can destabilize a bump that would be stable in the
absence of synaptic depression; instabilities are dominated by
shift perturbations that evolve into traveling pulses. The stability
analysis assumed that the dominant instabilities were associated
with non-oscillatory, separable solutions of the pseudo-linear Eqs.
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Fig. 11. Snapshots of a bump destabilizing to a breather at successive times t D 5; 6; 10; 20 (top to bottom) for � D 1:2 and � D 0:16. Both u.x; t/ (black curves) and
h.x; t/



1060 Z.P. Kilpatrick, P.C. Bressloff / Physica D 239 (2010) 1048�1060
Fig. 12. Bump destabilizing to a traveling pulse for � D 2:0; � D 0:3. (a) Space�time plot of the activity u.x; t/ evolving from an initial bump solution that is perturbed by
a small rightward shift at t D 5. (b) Snapshot of perturbed solution u.x; t/ (black solid curve) and h.x; t/ (black squares) at time t D 20, along with initial profiles U.x/ (grey
curve) and H.x/ (grey dashed curve). Eventually, the threshold crossing u.aC�a

C
; t/ D h0 C � vanishes. Other parameters are h0 D 0:04, � D 0:1.
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