


likely, and [26] suggests that weak and aperiodic stimulation of
interneurons is the best protocol to make this distinction.
Nonetheless, it is clear that recent experiments have verified
much of the extensive theory developed regarding the mechanism
of gamma rhythms.

One particularly notable experimental observation of the PING
mechanism for gamma rhythms is that constituent excitatory
neurons fire sparsely and irregularly [12,27], while inhibitory
neurons receive enough excitatory input to fire regularly at each
cycle. Due to their possessing slow hyperpolarizing currents,
pyramidal neurons spike more slowly than interneurons [28], so
this partially explains their sparse participation in a fast rhythm set
by the interneurons. Modeling studies have accounted for the wide
distribution of pyramidal neuron interspike intervals by presuming
sparse random coupling in network connections [29] or by
including some additive noise to the input drive of the population
[30]. From this standpoint, the excitatory neurons are passive
participants in the generation of fast rhythms, so their statistics
have no relation cell to cell. The requirement, in these cases, is a
high level of variability in the structure and drive to the network.
However, an alternative explanation of sparse firing might suggest
that excitatory neurons assemble into subpopulations, clusters, that
fire in a more regular pattern for a transient period of time. This
may be accomplished without the need for strong variability
hardwired into a network.

One cellular mechanism that has been largely ignored in
network models of fast synchronous spiking rhythms is spike
frequency adaptation [30,31]. Slowly activated hyperpolarizing
currents known to generate spike frequency adaptation have been
shown in many different populations of regular spiking cells within
cortical areas where gamma rhythms arise. In particular,
pyramidal neurons in visual cortex exhibit slow sodium and
calcium activated afterhyperpolarizing current, proposed to play a
major role in generating contrast adaptation [32]. Regular spiking
cells in rat somatosensory cortex also have adaptive currents.
Furthermore, they exhibit a type 1 threshold, where they can fire
regularly at very low frequencies [33]. Also, recent experiments in
primate dorsolateral prefrontal cortex reveal significant increases
in interspike intervals due to spike frequency adaptation [34].
Synchronous spiking in the gamma range has been observed in
visual [2,12], somatosensory [35,36], and prefrontal [14] cortex,
all areas with neurons manifesting adaptation. Also, adaptation

may promote a low resonant frequency in regular spiking neurons
that participate in gamma rhythms, as revealed by optogenetic
experiments [24]. Therefore, adaptation not only slows the spike
rate of individual regular spiking neurons, but can play a role in
setting the frequency of network level spiking rhythms.

Thus, we propose to study a paradigm for the generation of a
network gamma rhythm in which excitatory neurons form clusters.
This accounts for the key observation that excitatory cells do not
fire on every cycle of the rhythm. The essential ingredients of the
network are spike frequency adaptation and global inhibitory
coupling. Spike frequency adaptation produces the slow firing of
individual cells. The restrictions on the sparsity of coupling and the
level of noise in the network are much looser than [30]. After
identifying these properties of the network, we can extract several
relationships between parameters of our model and attributes of
the resulting clustered state of the network. One result of
considerable interest is the relationship between the time constant
of adaptation and the number of clusters that can arise in the
network. Using two different methods of analysis, we can predict
the cluster number Nc to scale with adaptation time constant ta as
Nc!t2=3

a .
The paper employs both a detailed biophysical model as well as

an idealized model that we study for the formation of cluster states.
Our results begin with a display of numerical simulations of cluster
states in the detailed model. The main point of interest is that
excitatory neurons possess a spike frequency adaptation current
whose timescale appears to influence the number of clusters that
can arise. To begin to understand how this happens, we analyze
the periodic solution of a single adapting neuron, in the limit of
large adaptation time constant, for an idealized model of adapting
neurons. Using singular perturbation theory, we can derive an
approximate formula for the period of a single neuron and thus an
estimate of the number of clusters in a network of neurons. Then,
an exact expression is derived for the periodic solution of an
equivalent quadratic integrate and fire model with adaptation as
well as its phase-resetting curve. Next, we employ a weak coupling
assumption to predict the number of synchronized clusters that
will emerge in the network as the amplitude of additive noise is
decreased. The number of clusters in the predicted state is directly
related to a Fourier decomposition of the phase-resetting curve.
Our main result is that both the singular perturbation theory and
weak coupling analysis predict the same 2=3 power law relating
cluster number to adaptation time constant. Finally, we compare
our predictions made using singular perturbation theory and the
weak coupling approach to numerical simulations of the idealized
model and the detailed biophysical model.

Methods

Traub model of an excitatory-inhibitory network with
adaptation

For our initial numerical simulations, we use a biophysical
model developed by Traub for a network of excitatory and
inhibitory spiking neurons [37]. Parameters not listed here are
given in figure captions. The membrane potentials of each
excitatory neuron and each inhibitory neuron satisfy the dynamics:
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Random initial conditions are used for the simulations of the

model, and we wait until the system has settled into a steady state
to make calculations of the statistics. We evolve this model
numerically, using the Euler-Maruyama method, with a time step
of dt = 0.0001.

Idealized model network with adaptation
The majority of our analysis uses an idealized spiking neuron

model to study the mechanism of clustering associated with a
network of adapting neurons. The Traub model for a single neuron
exhibits a saddle-node on an invariant circle (SNIC) bifurcation. It is
possible to exploit this fact to reduce the Traub model to a theta
neuron model with adaptation, if the system is close to the
bifurcation and the adaptation is small and slow [38]. In [39], an
alternative conductance based model with an afterhyperpolarizing
(AHP) current was reduced using phase reduction type techniques,
where the AHP gating variable was taken to evolve slowly. In
particular, Fig. 3(c) of [39] shows that the associated phase-resetting
curve has a characteristic skewed shape. We also eliminate the
inhibitory cells from the idealization of this section by slaving their
synaptic output to the total firing of the excitatory cells. To our
knowledge, there is no rigorous network level reduction that would
allow us to reduce the excitatory-inhibitory conductance based
network to the idealized one we present here. We do not provide a
meticulous reduction from the Traub network model to the network
analyzed from here on. We do wish to preserve the essential aspects
of the biophysical model described in the previous section, spike
frequency adaptation and inhibitory feedback.

Therefore, we consider a system of N spiking neurons, each
with an associated adaptation current, globally coupled by a
collective inhibition current

_hhj~1{ cos hjz(1z cos hj)(Izsjj{bzj{cs), ð1aÞ
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sort function. We do not resort the neurons between the left and
right panel, which displays the mixing effects of cycle skipping.

We use standard techniques for computing the interspike interval



where Nc and !NNc are the minimum and maximum number of



connectivity for generating sparse firing. This can be contrasted
with the degradation of correlations between excitatory neurons
on fast timescales in [30], due to strong fluctuations and sparse
connectivity in their excitatory-inhibitory network.

Thus, the cluster state that arises in this biophysically based
network of spiking neurons appears to be a stable state that exists
over a large range of parameters. The essential ingredients are a
slow adapting current and inhibitory neurons that only fire when
driven by excitatory neurons.

Analysis of clustering mechanism in an idealized network
The key feature of the detailed biophysical model that makes

excitatory neurons susceptible to grouping into clusters is spike
frequency adaptation. Few studies have examined the effects of
adaptive mechanisms on the dynamics of synchronous states in
spiking networks. In a study of two coupled adapting Hodgkin-
Huxley neurons, their excitatory synapses transitioned from being
desynchronizing to synchronizing as the strength of their spike
frequency adaptation was increased [50]. In a related study, spike
frequency adaptation was shown to shift the peak of an idealized
neuron’s phase-resetting curve, creating a nearly stable synchro-
nous solution [51]. The effects of this on network level dynamics
were not probed, and, in general, studies of the effects of
adaptation on dynamics of large scale neuronal networks are fairly
limited. A large excitatory network with adaptation can exhibit
synchronized bursting, followed by long periods of quiescence set
by the adaptation time constant [52]. Spike adaptation must build
up slowly and be strong enough to keep neurons from spiking at
all. More aperiodic rhythms were studied in populations of
adapting neurons by [53], who showed the population frequency
could be predicted by the preferred frequency of a single adapting
cell. Adaptation has also been posed as a mechanism for disrupting
synchronous rhythms in [54], where increasing the conductance of
slow hyperpolarizing currents transitions a network to an
asynchronous state. There remain many open questions as to
how the strength and timescale of adaptive processes in neurons
contribute to synchronous modes at the network level.

We therefore proceed by studying several characteristics of the
cluster state as influenced by spike frequency adaptation. First, we
study how the period of a single neuron relates to the strength and
time scale of adaptation. Then, we find how these parameters bear
upon the number of clusters arising in the network of adapting
neurons with global inhibition. Approximate relations are derived
analytically and then compared to the results of simulations of (1)
as well as the Traub model.

Approximating the periodic solution and cluster number
with singular perturbation theory

We first present a calculation of the approximate period T of a
single adaptive neuron, uncoupled from the network. The singular
perturbation theory we use relies upon the fact that the periodic
solution is composed of three different regions in time: an initial
inner boundary layer; an intermediate outer layer; and a terminal
inner boundary layer. In this case, the initial and terminal
boundary layers correspond to what would be the back and front
of an action potential in a biophysical model of a spiking neuron,
such as the Traub model. The intermediate layer corresponds to a
refractory period imposed by the strong slow afterhyperpolarizing
current. An asymptotic approximation to the periodic solution is
pictured in Fig. 3, showing the fast evolution of h in boundary
layers and slow evolution in the outer layer. The slow timescale
arises due to the fact that ta&1, so we shall use the small
parameter E~1=ta in our perturbation theory. Key to our analysis
is the fact that the end of the outer layer comes in the vicinity of a

saddle-node bifurcation in the fast subsystem, determined by the h
equation (1a). It then turns out that, as a result, we must rescale
time to be t~O(E1=3) in the terminal boundary solution. Such an
approach has been studied extensively by Guckenheimer in the
Morris-Lecar and Hodgkin-Huxley neurons with adaptation, as
well as general systems that support canards of this type [55,56].
Nonetheless, we proceed by carrying out a similar calculation here
and use it to derive an approximate formula for the period of the
solution. We find that it matches the numerically computed
solution remarkably well. In addition, we can use the expression
for the period to explain why the number of clusters Nc arising in
the network (1), when compared to the adaptation time constant
ta, will scale as Nc!t2=

=a



formulae can be utilized extensively in the explanation of network
dynamics.

In deriving our approximation to the periodic solution, we were
able to calculate a relatively concise formula relating the period of
the solution to the remainder of the parameters
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where tb is the minimal solution to
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such that tbw0 (see Text S1). We illustrate the accuracy of this
approximation over a wide range of adaptation time constants ta

in Fig. 5. The approximation is fairly accurate for a substantial
region of parameter space, but improves appreciably as ta and b
are increased.

We conclude our study of the periodic solution to (2) by using
our formula for the period (4) to roughly calculate the number of
clusters admitted by a network of adapting neurons with pulsatile
inhibitory coupling. This also provides us with an estimate of the
population spike frequency. Any inputs delivered to the neuron
during the initial or the outer layer stage of the solution, equation



are also nonlinear relationships derived here between cluster
number and other parameters. We shall compare this formula
further with the predictions we calculate using weak coupling and
the phase-resetting curve. Since the perturbative solution ceases its
slow dynamics briefly before the numerical solution (see Fig. 4), we
expect that this asymptotic formula (6) approximating cluster size
may be a slight underestimate.

Nonetheless, it allows us to concisely approximate how the
population frequency depends on the adaptation time constant ta

as well as the cluster number Nc. Since each neuron spikes with a
period T given by equation (4) and there are Nc clusters of such
neurons, the frequency of populations spikes in the network are
given by

fp~
Nc

T
~

1

tbt1=3
a

: ð7Þ

We plot this function versus ta as well as Nc in Fig. 6. Notice,
networks with neurons whose spike frequency adaptation have a
longer time constant support synchronous spiking rhythms with
lower frequencies, as in the Traub network (see Fig. 1). Also, by
our mechanism, as more clusters are added, the population
frequency decreases. This is due to the period of individual neuron
spiking scaling more steeply with adaptation time constant than
the cluster number.

We have identified general relationships between the adaptation
time constant and two quantities of the idealized spiking network
(1): the period of a single neuron and the cluster number of the
network. These relationships help characterize the behavior of the
cluster state in the adaptive network. In particular, the bifurcation
structure of the fast-slow formulation of the single neuron system
guides the identification of a t1=3

a timescale of the spike phase,
which evidently guides network level dynamics. Singular pertur-
bation theory is indispensable in making this observation.

Phase-resetting curve of an adapting neuron
As a means of studying the susceptibility of a single neuron to

synchronizing to input from the network, we shall derive the
phase-resetting curve of a neuron with adaptation. Biophysically,
the phase-resetting curve corresponds to the amount that brief
inputs to a tonically spiking neuron delay or advance the time of
the next spike. First, we make a change of variables
x~ tan (h=2) to the system (2), so the state of the neuron is
now described by the quadratic integrate and fire (QIF) model

with adaptation [58]

_







Upon plugging this into (20), we find the eigenvalue associated
with the nth mode of g is related to the Fourier coefficients am,bm

of H by
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Thus, as D is reduced towards zero, the first eigenmode to
destabilize will be the one whose eigenvalue crosses from the left to
the right half of the complex plane first. Using equation (22), we
can identify this mode as the first n to have Reln~0 or

2D

cw

~{
bn

n
:

This corresponds to the n# for which {bn=n is maximal. For the
critical D value at which the first eigenvalue has positive real part,
we show plots of ln as a function of n for several different
parameters in Fig. 9. Notice that as the adaptation time constant
ta is increased, and other parameters are held fixed, the critical n
increases. As the synaptic time constant ts is increased and other
parameters are held fixed, the critical n decreases. We contrast this
with the case of excitatory coupling (cv0) in the system (1), where
the PRC is nonnegative. In this case, the critical n is fairly
insensitive to changes in the time constants, virtually always
predicting the n~1 mode becomes unstable first (not shown).
Therefore, our weak coupling calculation approximates the
number of clusters Nc for a given set of parameters using the
coupling function (17) with the Fourier expansion (21) so that

Nc~argmaxn[Zz {
bn

n

) *
: ð23Þ

To compare with our singular perturbation theory results, we
compute the approximate number of clusters using the weak
coupling assumption for pulsatile synapses. In the limit ts?



cluster number that accounts for synaptic timescale might include
an inverse dependence upon ts.

Comparing numerical simulations to theoretical
predictions of clustering
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they will evolve along a manifold determined by the slow subsystem

0 = 1 − cos θ + (1 + cos θ)(I − βz0e−s), (6)

where s = ϵt is a slow time variable. We can solve (6) for the outer layer’s dynamics

θ(s) = − cos−1

[

I − βz0e−s + 1

βz0e−s + 1 − I

]

. (7)

Notice that this solution will vanish when βz0e−ϵTSN = I. This is related to the fact that as the total
input to the neuron passes through zero, there is a saddle-node bifurcation in the equilibria structure of
the associated fast subsystem [1]. This is a common mechanism for initiating the fast part of a relaxation
oscillation [2]. The slow solution will therefore last about

TSN =
1

ϵ
ln

βz0
I

.

When the system reaches the vicinity of the saddle-node (t ≈ TSN), it will begin to evolve according
to fast dynamics. Therefore, we must calculate the terminal dynamics of the periodic solution within a
boundary layer. To do this, we presume perturbative solutions and fast timescales with arbitrary scaling
θ = ϵpθ1 and τ = ϵq(t − TSN). Substituting these expressions into (3), we have

ϵp+q dθ1
dτ

=
1

2
ϵ2pθ21 + 2βz0e−ϵTSN ϵ1−qτ.

Upon setting p = q = 1/3, we find the order of all terms is matched. Now, we apply the Riccati
transformation θ1 = −2ẏ/y, as well as a change of variables r = Bτ , where

B =

(

βz0e−ϵTSN

2

)1/3

=

(

I

2

)1/3

.

This yields Airy’s equation

d2y

dr2
= ry,

which has general solutions

y(r) = c1Ai(r) + c2Bi(r),

where Ai(r) and Bi(r) are the Airy functions of the first and second kind. We specify the solution θ1 by
transforming back, changing variables back to τ , and applying the initial condition θ1(0) = 0 to find

θ1(τ) = 2B

√
3Ai′(−Bτ) + Bi′(−Bτ)

√
3Ai(−Bτ) + Bi(−Bτ)

.

We can predict the point where the inner layer solution will diverge to be the minimal τb such that τb > 0
and

√
3Ai(−Bτb) = −Bi(−Bτb). (8)

The blow up of this inner solution roughly denotes the end of the solution period. Converting back to
the time variable t, we find the period will be

T = TSN +
τb

ϵ1/3
(9)

=
1

ϵ
ln

βz0
I

+
τb

ϵ1/3
.
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Substituting (9) into (2) and requiring self-consistency, we can solve for the initial condtion

z0 = 1 +
I

β
e−ε2/3τb .

Therefore, the time it takes to reach the saddle-node is

TSN =
1

ϵ
ln

[

β

I
+ e−ε2/3τb

]

≈
1

ϵ

{

ln

[

β

I
+ 1

]

−
ϵ2/3τb

β/I + 1

}

, (10)

when we Taylor expand to first order. Plugging (10) into (9) and rewriting τa = 1/ϵ, we have the
approximation for the period of the solution

T ≈ τa ln

[

β

I
+ 1

]

+
βτ1
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Note, we use ϵ here for comparison with our singular perturbation theory results. Our next step is to
employ the transformation x = −ẏ/y to convert the Riccati equation (12) to

d2y

dt2
= [β̄e−ϵt − I]y,


