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Abstract We study the spatiotemporal dynamics of
a two-dimensional excitatory neuronal network with
synaptic depression. Coupling between populations of
neurons is taken to be nonlocal, while depression is
taken to be local and presynaptic. We show that the
network supports a wide range of spatially structured
oscillations, which are suggestive of phenomena seen
in cortical slice experiments and in vivo. The particular
form of the oscillations depends on initial conditions
and the level of background noise. Given an initial, spa-
tially localized stimulus, activity evolves to a spatially
localized oscillating core that periodically emits target
waves. Low levels of noise can spontaneously generate
several pockets of oscillatory activity that interact via
their target patterns. Periodic activity in space can also
organize into spiral waves, provided that there is some
source of rotational symmetry breaking due to external
stimuli or noise. In the high gain limit, no oscillatory
behavior exists, but a transient stimulus can lead to a
single, outward propagating target wave.
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1 Introduction

Spatially localized oscillations arise both in vivo and
in vitro and may be observed experimentally using
multi-electrode arrays or voltage-sensitive dye imaging
(Wu 2008). Such organizing activity in the brain has
been purported to play a role in sensory perception
(Ermentrout and Kleinfeld 2001; Lakatos et al. 2007),
memory—both working and long term (Klimesch
1999), and pathological events like epilepsy (Milton and
Jung 2003). Whether or not large-scale brain oscilla-
tions are epiphenomena or have functional significance
remains an open question in many cases. However,
both experiment and modeling continue to devote ef-
forts to understanding the mechanisms that generate
and sustain oscillations (Buszaki and Draguhn 2004).

When neocortical or hippocampal in vitro slices are
treated with an inhibitory neurotransmitter antagonist
such as bicuculline, effectively eliminating inhibition, a
localized current stimulus evokes population activity.
Such activity may take the form of a spatially localized
group of neurons whose population activity oscillates
around 1–10 Hz (Wu et al. 1999; Milton and Jung 2003;
Shusterman and Troy 2008); during each oscillation
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Wang 2000; Tabak et al. 2000; Tsodyks et al. 1998) and
spike frequency adaptation (Benda and Herz 2003).

A variety of sensory stimuli have been linked to
oscillations in vivo. For example, a number of studies
of vertebrate and invertebrate olfactory bulbs have
found that odor stimuli can elicit oscillations (Lam
et al. 2000; Delaney et al. 1994). Stimuli can also
evoke oscillations and waves in visual cortex (Singer
and Gray 1995; Roelfsema et al. 1997; Xu et al. 2007;
Benucci et al. 2007; Han et al. 2008), rat barrel cortex
(Petersen et al. 2003), and auditory cortex (Lakatos
et al. 2007). Spatiotemporal activity is not only a neural
correlate of sensory stimuli, but is also associated with
various forms of memory. For example, the encoding
of new information as well as the retrieval of long-
term memory is reflected by the period of oscillations
(Klimesch 1999), and the recall of a previous memory is
often accompanied by an increase in oscillatory power
(Sederberg et al. 2003). On the other hand, station-
ary bumps of persistent spatial activity that neither
propagate nor oscillate have been seen during working
memory tasks (Wang 1999).

Oscillations can also be the signature of certain brain
pathologies such as epilepsy (Milton and Jung 2003).
Electrophysiology has been used to study epilepsy in
humans as well as animal models, and seizures are
usually accompanied by measurable structured popu-
lation activity. Trauma or developmental malfunction
can lead to reduced regions of inhibition, axonal sprout-
ing, or synaptic reorganization of excitatory circuitry
(Dudek and Spitz 1997). Such regions are prime can-
didates for epileptic seizure foci. Any incurring excita-
tory input may be sufficient to create high frequency
oscillations in the population activity of these patches of
cortex (McNamara 1994). The nature of such structured
population activity as recorded by electroencephala-
gram can indicate the nature of the seizure mechanism
(Lee et al. 2006). As in cortical slice studies, some
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close to threshold is consistent with the observation
that spike frequency adaptation tends to linearize the
firing frequency-input current curve (Ermentrout 1998;
Wang 1998). In the limit that σ → ∞, we recover the
Heaviside step function used in Amari’s original work
on scalar networks (Amari 1977) and most analyt-
ical studies of the Pinto-Ermentrout model (Pinto and
Ermentrout 2001a, b; Shusterman and Troy 2008; Folias
and Bressloff 2004, 2005a, b; Troy and Shusterman
2007; Troy 2008):

f (u) = H(u − θ) =
{

0, u ∈ (−∞, θ),

1, u ∈ [θ, ∞).
(2.3)

We will use such a function in order to study target
waves and stationary bumps (see Section 5). One im-
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We find additional equilibria by solving (3.1) on the
middle and upper domains of f . On the middle domain
(θ ≤ u ≤ θ + σ −
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for a system with smoother forms of f . However, as the
simulations are qualitatively similar, we only show re-
sults for the piecewise linear case. As in previous stud-
ies of two-dimensional neural field models, we carry
out a transformation of our system for more efficient
computation (Laing and Troy 2003; Laing 2005; Troy
and Shusterman 2007; Owen et al. 2007). That is, we
convert the integro-differential equation system (2.1)
to a fourth order PDE using two-dimensional Fourier
transforms. This is possible due to the fact that the
Fourier transform of the weight distribution w(r) given
by Eq. (2.5) is a rational function. Discretizing the
resulting differential operators leads to sparse matrices,
as opposed to full matrices arising from an integral
operator.

Numerical simulations are thus performed on the
following system, which is equivalent to Eqs. (2.1) and
(2.5):
[∇4 − A∇
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Fig. 7 Snapshots of the solution u(x, y, t) to the fourth order
PDE (4.1), following a stimulus specified by Eq. (4.3) at t = 0,
where χ = 1 and ζ = 25. Initially, an activated state spreads
radially outward, across the entire medium as a traveling front.
Then, the localized oscillating core of activity emits a target wave

with each oscillation cycle. Eventually, these target waves fill the
domain. Each target wave can be considered as a phase shift
in space of the oscillation throughout the medium; they travel
with the same speed as the initial front. Parameters are α = 80,
β = 0.05, σ = 4

from the Down state of the network being a stable
focus. Laing used the rotational symmetry of the spiral
waves to generate equations for the activity profile and
angular velocity of a spiral on a disc domain (Laing
2005). Troy and Shusterman generated spiral waves
by continually breaking the symmetry of target waves
in the network (Troy and Shusterman 2007). In our
model, we find that spiral wave patterns can be induced
by breaking the rotational symmetry of pulse emitter
solutions. More specifically, we chose an initial condi-
tion where the target pattern produced by the emitter
has the top and bottom halves of its domain phase
shifted. The network then evolves into two counter-
rotating spirals on the left and right halves of the
domain as shown in Fig. 8. Closer inspection of one
of these spirals reveals that it has a fixed center about
which activity rotates indefinitely as shown in Fig. 9.

Huang and others showed that spiral waves gener-
ated in cortical slices are a way for oscillating activity
to organize spatially in a smooth and isotropic medium

(Huang et al. 2004). They found the waves persisted for
up to 30 cycles and rotated at a rate of roughly 10 cycles
per second. Also, the phase singularity at the center of
a spiral wave experiences a reduction in oscillation am-
plitude due to the mixing of all phases in a small region.
Certainly, the spiral waves we have found in our system
persist for a long time, but it seems that the rotation
rate is slightly slower at roughly 2 Hz. Of course this is
due in part to the time constant of synaptic depression.
As we have shown in our previous work, including
spike frequency adaptation can increase the frequency
of oscillations (Kilpatrick and Bressloff 2009).

4.3 Noise-induced oscillations

As in the space-clamped system, it is interesting to
consider the effects of noise on the two-dimensional
spatially extended network. In a recent study of the
role of additive Gaussian noise on Turing instabili-
ties in neural field equations, Hutt et al. found that
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a Gaussian white noise term to each equation of a
discretized version of the fourth order PDE (4.1):

Lh

(
uk+1

ij − uk
ij

�t
+ uij + ημij(t)

)
= Mqij f (uij),

qk+1
ij − qk

ij

�t
= 1 − qij

α
− βqij f (uij), (4.4)

where i = 1, ..., Nx and j = 1, ..., Ny, Lh is the finite dif-
ference version of the linear operator given in Eq. (4.1),
uij and qt9.7( 57(y)Tj
/F1 1 Tf
10 0 0p0n-0 6.9999 202.083 597.0,)T.m3e64 597.sl 202.08310609.5(the)-209(linear)m
0 Tc3line75c
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function H(u − θ). We find that there is always a low
activity or Down state on the lower domain (u < θ)
for θ > 0 such that (u, q) = (0, 1). The stability of this
Down state is determined by the eigenvalues of the
Jacobian

J (0, 1) =
(−1 0

0 −1/α

)
(5.2)

and is therefore stable for all realistic parameters. As
stated in our analysis of the system with the piecewise
linear firing rate function, this stable Down state indeed
should exist for all systems possessing an f with a hard
threshold.

In the upper domain (u > θ), an equilibrium is given
by the system

0 = −u + q, (5.3)

0 = (1 − q)/α − βq, (5.4)

implying a fixed point (u,q) = (1/(1 + αβ), 1/(1 + αβ))
will exist, provided θ < 1/(1 + αβ). Its stability is deter-
mined by the eigenvalues of the Jacobian

J (u, q, a) =
(−1 1

0 −(1/α + β)

)
, (5.5)

which guarantees that such an Up state is always stable.
Therefore, as stated, we have a bistable system as long
as θ < 1/(1 + αβ), as pictured in Fig. 12. Additive noise
could then be a mechanism for switching the system
between its Up and Down states. However, if θ >

1/(1 + αβ), only the Down state exists, which physically
means that in this case synaptic depression curtails
recurrent excitation to the point that no sustained ac-
tivity is possible. In the special case θ = 1/(1 + αβ), an
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Fig. 13 Snapshots of a solution u(x, y,
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We can calculate the double integral in (5.13) using
Fourier transform and Bessel function identities, as in
a previous study (Folias and Bressloff 2004). Thus, we
find that

�(a, r) = 2πa
∫ ∞

0
ŵ(ρ)J0(rρ)J1(aρ)dρ, (5.14)

where ŵ(ρ) is the two-dimensional Fourier transform
of w, and Jν(z) is a Bessel function of the first kind.

To illustrate the parameter dependence of stationary
bumps, we consider the concrete example of a weight
function w given by the difference of modified Bessel
functions (2.5), which has the Fourier transform (4.2).
The integral (5.14) can then be evaluated explicitly by
substituting (4.2) into (5.14), setting r = a, and using the
identity

a
∫ ∞

0

1

ρ2 + s2
J0(aρ)J1(aρ)dρ = a

s
I1(sa)K0(sa),

where Iν is the modified Bessel function of the first
kind. Thus, the condition for existence of a stationary
bump of radius a is given by

(1 + αβ)θ = �(a), (5.15)

with

�(a) ≡ �(a, a)

= 4

3

(
aI1(a)K0(a) − a

2
I1(2a)K0(2a)

)
. (5.16)

Relations between bump radius a and depression
strength β are shown in Fig. 14. Numerical simulations
suggest all such bumps are unstable, so that some form
of lateral inhibition is required in order to stabilize
the bumps. Alternatively bumps could be stabilized by
global divisive inhibition (Wu et al. 2008; Fung et al.
2008)

While bump existence calculations are straightfor-
ward in the case of a Heaviside firing rate function,
bump stability calculations are not, due to the piece-
wise smooth nature of the depression dynamics. Fol-
lowing previous studies of bump stability (Pinto and
Ermentrout 2001b; Folias and Bressloff 2004; Owen
et al. 2007), one could formally linearize the neural
field equations. However, as we have recently shown
in the case of one-dimensional bumps (Kilpatrick and
Bressloff 2009), considerable care has to be taken
in evaluating terms arising from perturbations of the
bump boundary. It turns out one needs to keep track of
the sign of such perturbations, analogous to what hap-
pens when θ = 1/(1 + αβ) in the space-clamped system.
The details of this analysis will be presented elsewhere.

0
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feedback mechanism for generating moderately fast
wave (1–10 Hz) oscillations, it is possible that synaptic
facilitation of excitatory to inhibitory synapses plays
a role in producing slow wave oscillations (0.1–1 Hz),
as recently suggested by a modeling study of a space-
clamped network (Melamed et al. 2008). We hope to
pursue this in a future study.
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