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areas share information about bump position across the multi-
area network. Recently, (Folias and Ermentrout, 2011) showed
several novel activity patterns emerge when considering neural
fields with multiple areas. In addition, recent analyses of spa-
tiotemporal dynamics of perceptual rivalry have exploited dual
population neural field models, where activity in each area rep-
resents a single percept (Kilpatrick and Bressloff, 2010; Bressloff
and Webber, 2012b). In this study, we focus on activity pat-
terns where bumps in each area have positions that remain
close.

Our study mostly focuses on a dual area model of spatial
working memory, where each area provides a replicate repre-
sentation of the presented cue. We begin by demonstrating the
neutral stability of the bump position in each area, in the absence
of noise and interareal projections. Upon including noise and
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describing both local and shared noise in either area, j = 1, 2
with j �= k. For simplicity, we assume the local spatial correlations
have a cosine profile Cj(x) = cj cos(x). We also typically assume
the correlated noise component has cosine profile so Cc(x) =
cc cos(x). Therefore, in the limit cc → 0, there are no interareal
noise correlations, and in the limit cc → min(c1, c2), noise in
each area is maximally correlated. For instance, when c1 = c2 =
cc = 1, noise in each area is drawn from the same process.

MULTIPLE-AREA MODEL OF SPATIAL WORKING MEMORY
To incorporate the effects of many coupled, redundant areas
encoding a spatial working memory, we consider a model with
N areas and arbitrary synaptic architecture, given by

τduj(x, t) =
[
−uj + ε1/2

N∑
k = 1

wjk ∗ f (uk)

]
dt

+ ε1/2dWj(x, t) (6)

where uj represents neural activity in the jth area where j =
1, . . . , N. As before, we set τ = 1, so each time unit corresponds
to the roughly 10 ms timescale of excitatory synaptic conduc-
tance. The weight function wjk(x − y) represents the connection
from neurons in area k with cue preference y to neurons in area
j with cue preference x as described by (Equation 2). For com-
parison with numerical simulations, we take weight functions to
be the cosines (Equation 3) and (Equation 4) and the firing rate
function to be Heaviside (Equation 5). As in the dual area model,
noises Wj(x, t) are white in time and correlated in space so that
〈dWj(x, t)〉 = 0 and

〈dWj(x, t)dWk(y, s)〉 = Cjk(x − y)δ(t − s)dtds,

with j, k = 1, . . . , N, where local noise correlations are described
when j = k and noise correlations between areas are described
when j �= k. For comparison with numerical simulations, we
consider Cjj(x) = cos(x) and Cjk(x) = cc cos(x) for all j �= k.

NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
The spatially extended model (Equation 1) was simulated
using an Euler–Maruyama method with a timestep 10−4, using
Riemann integration on the convolution term with 2000 spatial
grid points. To compute and compare the variances 〈�1(t)2〉 for
the dual and multiple area model, we simulated the system 5000
times. The position of the bump �j at each timestep, in each sim-
ulation, was determined by the position x in each area j at which
the maximal value of uj(x, t) was attained. The variance was then
computed at each timepoint and compared to our asymptotic
calculations.

RESULTS
We will now study how interareal architecture affect the dynam-
ics of bumps in multiple area stochastic neural fields. To start,
we demonstrate that in the absence of reciprocal connectivity
between areas bump attractors exist that are neutrally stable to
perturbations that change their position, which has long been
known (Amari, 1977; Camperi and Wang, 1998; Ermentrout,

1998). Introducing weak interareal connectivity can decrease the
variability in bump position because noise that moves bumps in
the opposite direction is canceled due to an attractive force intro-
duced by connectivity. Perturbations that push bumps in the same
direction are still integrated, so bumps wander due to dynamic
fluctuations, but their effective variance is smaller than it would
be without interareal synaptic connections. In the presence of
noise correlations between areas, effects of noise cancelation are
weaker since stochastic forcing in each area is increasingly simi-
lar. Our asymptotic analysis is able to explain all of this with its
resulting multivariate Ornstein–Uhlenbeck process.

BUMPS IN THE NOISE-FREE SYSTEM
To begin, we seek stationary solutions to Equation (1) in the
absence interareal connections and noise (ε → 0). Similar anal-
yses have been carried out for bumps in single area populations
(Ermentrout, 1998; Hansel and Sompolinsky, 1998
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FIGURE 2 | Diffusion of bumps in the dual area stochastic neural field

(Equation 1). (A) Without interareal connections (w12 = w21 ≡ 0), each
bump executes Brownian motion about the domain, due to stochastic forces.
(B) In the presence of interareal connections

√
εw12(x) = √

εw21(x) =
0.01(cos(x) + 1), the position of bump 1 (magenta) is attracted to the

position of bump 2 (cyan) and vice versa. Due to the reversion of each bump
to the position of the other, both bumps effectively wander the domain less.
Local connectivity is described by the cosine (Equation 3); the firing rate
function is Equation (5). Other parameters are threshold θ = 0.5 and noise
amplitude ε = 0.025.

� = (�1(x, t),�2(x, t))T ; and L is the linear operator

Lu =
( −u(x) + w(x) ∗ [f ′(U1(x))u(x)]

−v(x) + w(x) ∗ [f ′(U2(x))v(x)]
)

for any vector u = (u(x) v(x))T of integrable functions. Note that
the nullspace of L includes the vectors (U ′

1, 0)T and (0, U ′
2)

T ,
due to Equation (10). The last terms in the right hand side
vector of Equation (12) arise due to interareal connections. We
have linearized them under the assumption |�1 − �2| remains
small, so

f (Uj(x + �k − �j)) ≈ f (Uj(x))

+ f ′(Uj(x))U
′
j (x) · (�k − �j),

where j = 1, 2 and k �= j. To make sure that a solution to
Equation (12) exists, we require the right hand side is orthogonal

to all elements of the null space of the adjointL∗, which is defined

∫ π

−π

pTLudx =
∫ π

−π

uTL∗pdx,

for any integrable vector p = (
p(x) q(x)

)T
. It then follows

L∗p =
( −p(x) + f ′(U1(x))[w(x) ∗ p(x)]

−q(x) + f ′(U2(x))[w(x) ∗ q(x)]
)

. (13)

We can show that the nullspace of L∗ contains the vector
f1 = (f ′(U1)U ′

1, 0)T by plugging it into Equation (13) to yield

L∗f1 =
( −f ′(U1)U ′

1 + f ′(U1)[w ∗ [f ′(U1)U ′
1]

0

)
= 0
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where D is the covariance coefficient matrix of the white noise
vector W(t) given by Equation (17). To compute Equation (19),
we additionally need the diagonalization KT = (V−1)T�VT ,

so eKT t = (V−1
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the case of very strong reciprocal coupling between both areas.
Averaging information and noise between both areas decreases
positional variance as opposed to one area simply receiving noise
and information from another. Similar results have been recently
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perturbation in either direction. In the presence of interareal con-
nections, all bumps are only neutrally stable to translations that
move them all in the same direction. Therefore, networks with
more areas provide more perturbation cancelations.

To study how noise and interareal connections affect the
trajectory of bump positions, we again note noise causes all
bumps to wander away from their initial position, while being
pulled back into place by projections from other areas (see
Figure 7). The position of the bump in area j is described by the
stochastic variable �j. Noise also causes fluctuations in the shape

FIGURE 6 | Variance in the position of bumps as noise correlation

between areas is increased. Numerically computed variance (red shades)
match theoretical curves from Equation (29), blue shades, very well.
Reciprocal connectivity reduces variability the most when there is no
correlated noise (cc = 0) between areas. As the shared noise between
areas increased is amplitude (cc = 0.5,1), the advantage of reciprocal
connectivity is diminished. When cc = 1 changing κ does not affect the
variance 〈�(t)2〉 (see formula (29) in the limit cc → 1). Other constituent
functions and parameters are the same as in Figure 2.

of both bumps, which is described by the correction term �j.
Therefore, we presume the resulting state of the system satisfies
the ansatz

uj = Uj(x − �

=
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by differentiating (Equation 30). The last terms on the right hand
side of Equation (31) arise due to interareal connections. We have
linearized them under the assumption that |�k − �j| remains
small for all j, k. To ensure a solution to Equation (31), we require
the right hand side is orthogonal to all elements of the null space
of the adjoint operator L∗. The adjoint is defined with respect to
the inner product

∫ π

−π

ϒTL�dx =
∫ π

−π

�TL∗ϒdx

where ϒ = (ϒ1(x), . . . , ϒN(x))T is integrable. It then follows

L∗ϒ =
⎛
⎜⎝

−ϒ1(x) + f ′(U1(x))[w ∗ ϒ1]
.

� ϒN (x) +f ′ () [w � ϒN = � � ∗ L∗
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between areas are described by the symmetric matrix

K = κJN − NκI

where JN is the N × N matrix of ones and I is the identity. The
eigenvalues of JN are N, with multiplicity one, and zero, with mul-
tiplicity N − 1. Thus, the largest eigenvalue of K = κJN − NκI
is λ1 = 0 with associated eigenvector v1 = (1, . . . , 1)T . All other
eigenvalues are λj = −Nκ for j ≥ 2, with associated eigenvectors
vj = e1 − ej, where j
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