Interareal coupling reduces encoding variability in multi-area models of spatial working memory

Ze . P.K. .. e *

Department of Mathematics, University of Houston, Houston, TX, USA

R: : :
Albert Compte, Institut
d'investigacions Biomèdiques
August Pi i Sunyer, Spain
Moritz Helias, Institute for Advanced
Simulation, Germany

*C Zachary P. Kilpatrick, Department of Mathematics, University of Houston, 651 Phillip G Hoffman Hall, Houston, 77204-3008 TX, USA e-mail: zpkilpat@math.uh.edu

$$\tau_{k=1} u_{j}(x, t) = -u_{j} + \varepsilon^{1/2} \sum_{k=1}^{N} w_{jk} * f(u_{k}) \quad t$$

$$+ \varepsilon^{1/2} W_{j}(x, t) \tag{6}$$

 $\langle W_j(x,t)\rangle = 0$

$$\langle W_j(x, t) \rangle W_k(y, s) \rangle = C_{jk}(x - y)\delta(t - s) \langle t \rangle s,$$

 $\begin{array}{lll}
\vdots & j, k = 1, \dots, N, \\
\vdots & j = k \\
\vdots & j \neq k \\
\vdots & \vdots & \vdots
\end{array}$ $\begin{array}{lll}
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\$

NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

Ref. [] $u_j(x,t)$ [] $u_j(x,t)$

RESULTS

 $j \neq k. \text{ F.} \qquad j \neq k. \text{ F.$

BUMPS IN THE NOISE FREE SYSTEM

$$\mathbf{\Phi} = (\Phi_1(\mathbf{x}, t), \Phi_2(\mathbf{x}, t))^T; \quad \mathcal{L} \quad \mathcal$$

$$\mathcal{L} = \frac{-u(x) + w(x) * [f'(U_1(x))u(x)]}{-v(x) + w(x) * [f'(U_2(x))v(x)]}$$

$$f(U_{j}(x + \Delta_{k} - \Delta_{j})) \approx f(U_{j}(x))$$

$$+ f'(U_{j}(x))U'_{j}(x) \cdot (\Delta_{k} - \Delta_{j}),$$

$$E = \{f'(U_{1})U'_{1}, 0\}^{T}. \quad \text{i.i.} E = \{f'(U_{1})U'_{1}, 0\}^{T}. \quad \text$$

$$\int_{-\pi}^{\pi} ^{T} \mathcal{L} _{\bullet} x = \int_{-\pi}^{\pi} ^{T} \mathcal{L}^{*} _{\bullet} x,$$

$$= p(x) q(x)^{T} I \dots$$

$$\mathcal{L}^* = \begin{array}{c} -p(x) + f'(U_1(x))[w(x) * p(x)] \\ -q(x) + f'(U_2(x))[w(x) * q(x)] \end{array} . \tag{13}$$

$$\mathbf{f}'(U_1)U_1',0)^T. \quad \mathbf{A} \quad \mathbf{E} \quad \mathbf{E}$$

$$\mathcal{L}^*_{1} = \begin{array}{cc} -f'(U_1)U_1' + f'(U_1)[w * [f'(U_1)U_1'] \\ 0 \end{array} = 0$$

$$u_j = U_j(x - \Delta =$$

FIGURE 6 | Variance in the position of bumps as noise correlation between areas is increased. N $\,\,$ e $\,$ ca $\,\,$ c $\,\,$ ed a a $\,$ ce (ed $\,\,$ ade) ac e e ca c e. E \uparrow a \downarrow (29), b e ade, e e. Rec ca c ec ed ce a ab e e e e c e a ed \downarrow e ($c_c=0$) be ee a ea . A e a ed e be ee a ea cea ed a de $(c_c=0.5,1)$, e ad a a e ec ca c, ec d ed. W e $c_c=1$ c a, κ d e a ec e a a ce $(\Delta(t)^2)$ (ee. a (29) e $c_c \rightarrow 1$). O e c e . c adaa ee ae e a ea Figure 2.

$$\int_{-\pi}^{\pi} \mathbf{\Upsilon}^T \mathcal{L} \Psi_{\bullet} x = \int_{-\pi}^{\pi} \Psi^T \mathcal{L}^* \mathbf{\Upsilon}_{\bullet} x$$

,...
$$\Upsilon = (\Upsilon_1(x), \ldots, \Upsilon_N(x))^T$$

$$-\Upsilon_1(\textbf{x}) + f'(U_1(\textbf{x}))[\textbf{w} * \Upsilon_1]$$

$$\mathcal{L}^*\Upsilon =$$