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Competitive neural networks are often used to model the dynamics of perceptual
bistability. Switching between percepts can occur through fluctuations and/or a slow
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Kilpatrick Information transfer in perceptual multistability

networks connected by mutual inhibition, we consider the system
(Laing and Chow, 2002; Moreno-Bote et al., 2007; Shpiro et al.,
2007)

u̇R = −uR(t) + f (IR − qL(t)uL(t)) + ξ1(t), (6a)

u̇L = −uL(t) + f (IL − qR(t)uR(t)) + ξ2(t), (6b)

τq̇R = 1 − qR(t) − βuR(t)qR(t), (6c)

τq̇L = 1 − qL(t) − βuL(t)qL(t), (6d)

where uj(t) represents the firing rate of the j = L,R population.
The resource usage rate by synapse projecting from population
j = L,R is specified by βujqj and the resource recovery timescale is
τ. Fluctuations are introduced into population j with the indepen-
dent white noise processes ξj with 〈xj(t)〉 = 0 and 〈ξj(t)ξj(s)〉 =
εδ(t − s). Units of time are taken to be 10 ms each. In numeri-
cal simulations, uj(0) are initialized by randomly drawing from a
uniform distribution on [0, 1]; qj(0) are initialized by randomly
drawing from a uniform distribution on [1/(1 + β), 1].
NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
The spatially extended model (Equation 1) is simulated using
an Euler–Maruyama method with a timestep dt = 10−4, using
Riemann integration on the convolution term with 2000 spatial
grid points. A population is considered dominant if the peak
of its activity bump is higher than the other; switches occur
when the other bump attains a higher peak. The reduced net-
work (Equation 6) was also simulated using Euler–Maruyama
with a timestep dt = 10−6. Population j is considered domi-
nant when uj > uk (j 	= k); switches occur when the inequality
switches direction. To generate histograms of dominance times,
we simulated systems for 20,000s.

FITTING DOMINANCE TIME DISTRIBUTIONS
To generate the theoretical curves presented for exponentially
distributed dominance times, we simply take the mean of
dominance times and use it as the scaling in the exponential
(Equation 28). For those densities that we presume are gamma
distributed, we solve a linear system to fit the constants c1, c2,
and c3 of

f (T) = ec1Tc2e−c3T (7)

an alternate form of Equation (30). Upon taking the logarithm of
Equation (7), we have the linear sum

ln f (T) = c1 + c2 ln T − c3T. (8)

Then, we select three values of the numerically generated
distribution pn(Tn) along with its associated dominance
times: (Tn

1 , pn
1); (Tn

2 , pn
2); (Tn

3 , pn
3) where pn

j = pn(Tn
j ). We

always choose Tn
2 = arg maxT pn(T) as well as Tn

1 = Tn
2 /2 and

Tn
3 = 3Tn

2/2. It is then straightforward to solve the linear system⎛
⎝ 1 ln Tn

1 −Tn
1

1 ln Tn
2 −Tn

2

1 ln Tn
3 −Tn

3

⎞
⎠
⎛
⎝ c1

c2

c3

⎞
⎠ =

⎛
⎝ ln pn

1

ln pn
2

ln pn
3

⎞
⎠

using the\command in MATLAB.

RESULTS
We now present results that reveal the importance of synaptic
depression in preserving information about bimodal stimuli. No
previous work, to our knowledge, has studied how activity in a
ring model with depression (Equation 1) can be collapsed to a
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(Laing and Chow, 2002; Kilpatrick and Bressloff, 2010a).
Synaptic input u then tracks the slowly varying state of the
synaptic scaling term q. We have also verified in simulations
q is essentially piecewise constant in space, in the case of the
Heaviside non-linearity (Equation 4), which yields

u(x, t) ≈
∫ π/2

−π/2
cos(2(x − y))q(y, t)H(u(y, t) − κ)dy

− I0 cos(4x), (17)

and q is governed by Equation (1b). To start, we will also assume a
symmetric bimodal input (Ia = 0). This way, we can simply track
q in the interior of one of the bumps, given qi(t) = q(π/4, t).
Solving the resulting piecewise system of differential equations,
we can derive an implicit formula for

q0 = 1

1 + β
+ β

1 + β
e−T/τ − (1 − q0)e

−2T/τ, (18)

the value of the synaptic depression variable inside a bump just
prior to a switch. We can rearrange (Equation 18) to yield a
formula for the dominance time

T = τ ln

[
β + √

β2 − 4(1 + β)(1 − q0)[(1 + β)q0 − 1]
2(1 + β)q0 − 2

]
,

(19)

so that we now must specify the value q0. We can examine the fast
Equation (17), solving for the form of the slowly narrowing right
bump during its dominance phase

u(x, t) = qi(t)
[
sin2(x + a(t))− sin2(x − a(t))

]
− I0 cos(4x). (20)

We solve for the slowly changing width a(t) by enforcing the
threshold condition u(π/4 ± a(t), t) = κ and using trigonomet-
ric identities to find

a(t) = 1

2
tan−1

⎡
⎣qi(t) +

√
qi(t)2 + 4(I2

0 − κ2)

2(I0 + κ)

⎤
⎦ . (21)

We can also identify the maximal value of qi(t) = q0 which still
leads to the right bump suppressing the left. Once qi(t) falls below
q0, the other bump escapes suppression, flipping the dominance
of the current bump. This is the point at which the other bump
of Equation (20) rises above threshold, as defined by the equation
I0 − q0 sin(2a0) = κ. Combining this with Equation (21) and
solving the resulting algebraic equation, we find

q0 = 2I0
√
(I0 − κ)(3I0 + κ)

3I0 + κ
. (22)

The amplitude of synaptic depression is excluded from
Equation (22), but we know q0 ∈ ([1 + β]
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which we can solve explicitly for

aR = 1

2
cos−1

[
κ

2I0
+ 1

2

]
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We compute p[IR > IL|T∗(n)], the predicted probability IR > IL
based on sampling dominance time pairs from n cycles T∗(n) =
{T(1)

R ,T(1)
L ; T(2)

R ,T(2)
L ; . . . ; T(n)

R ,T(n)
L }. As n → ∞, the exponen-

tial distributions approximately defining the identical probability

FIGURE 5 | Predicted probability right input IR is higher than the left

input IL, based on the sampling n cycles (2n switches between

percepts), for symmetric inputs IL = IR = 0.9. After 2000 cycles,
p[IR > IL|T ∗(n)] ≈ 0.
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FIGURE 10 | Switching induced by noise and depression. (A) Single
realization of the network (Equation 6) with depression and noise. Activity
variables uR (black) and uL (blue) stay close to attractors at 0 and 1, aside
from depression or noise induced switching. Depression variables qR (red)
and qL (green) slowly exponentially change in response to the states of uR

and uL. (B) Right and (C) left dominance time distributions fit with gamma
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percepts that contains the same percept twice (e.g., 1 → 3 → 1).
This is opposed to a “switch forward,” which contains all three
percepts (e.g., 1 → 3 → 2). Statistics like these were analyzed
from psychophysical experiments of perceptual tristability, using
an image like Figure 11A (Naber et al., 2010). The main finding
of Naber et al. (2010) concerning this property is that switch for-
wards occur more often than chance would suggest. Therefore,
they proposed that some slow process may be providing a mem-
ory of the previous image. Memory in perceptual rivalry has also
been observed in experiments where ambiguous stimuli are pre-
sented intermittently (Leopold et al., 2002; Pastukhov and Braun,
2008; Gigante et al., 2009). We suggest short term depression as
a candidate substrate for this memory. As seen in Figure 13B, the
bias in favor of switching forward persists even for non-zero levels
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FIGURE 13 | Noise degrades two sources of information provided by

dominance switches. (A) In the absence of noise, switches always move
“forward,” so that the previous percept perfectly predicts the subsequent
percept. Dominance times accumulate at a single value too. (B(w)-13.3(i)-6.8(t0p(y)]2-465dc83tnce)-466

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kilpatrick Information transfer in perceptual multistability

states, leading to the slow timescale that defines the peak in
depression-noise generated switches. Finally, using a three popu-
lation space-clamped neural network, we analyzed depression and
noise generated switching that may underlie perceptual trista-
bility. We found this network also sustained some of the same
relationships between input contrast and dominance times as
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