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Figure 1. Saddle-node bifurcation of bumps in (1) with a Heav-
iside �ring rate function (3). (A) Di�erence of Gaussians weight

function w(x) = e�x
2 � Ae�x

2=�2

has a Mexican hat pro�le with
A = 0:4 < 1 and � = 2 > 1. The critical bump half-width ac at
the saddle-node satis�es the relation w(2ac) = 0. (B) The weight
function integral (4) determines the bump half-widths a. When �
is below the critical threshold �c at the saddle-node, there are two
stationary bump solutions to (1): one stable as and one unstable
au. When � > �c, there are zero equilibria, but the dynamics of
(1) are slow in the bottleneck near Uc(x).

By utilizing the integral function (4), we can write the even-symmetric solution

U(x) = W (x+ a)�W (x� a): (7)

To determine the half-width a, we require the threshold conditions U(�a) = � of
the solution (7) to yield

U(a) = W (2a) =

Z 2a

0

w(y)dy = �:

Note that when � < Wmax = maxxW (x), there will be a stable and unstable
bump solution to (1). When � = �c � Wmax, there is a single marginally stable
bump solution Uc(x) to (1), as illustrated in Fig. 1B. Di�erentiating W (2a) by
its argument yields W 0(2ac) = w(2ac) � 0 as an implicit equation for the half-
width ac at this criticality. Utilizing the notation of Amari condition (i), we have
that ac = x0=2. Note, the relation w(2ac) = 0 is explicitly solvable for ac for
several typical lateral inhibitory type weight functions. For instance, in the case

of the di�erence of Gaussians w(x) = e�x
2 � Ae�x

2=�2

on x 2 (�1;1) [1], we

have ac = �
p

ln(1=A)=
�
2
p
�2 � 1

�
and �c =

p
�

2 [erf(2ac)�A�erf(2ac=�)]. For the

\wizard hat" w(x) = (1 � jxj)e�jxj on x 2 (�1;1) [12], we have ac = 1=2 and
�c = e�1. For a cosine weight w(x) = cos(x) on the periodic domain x 2 [��; �] [35],
we have ac = �=4 and �c = 1.

To characterize the stability of bump solutions to (1), we will study the evo-
lution of small smooth perturbations " � (x; t) (" � 1) to stationary bumps U(x)
by utilizing the Taylor expansion u(x; t) = U(x) + " � (x; t) + O("2). By plugging
this expansion into (1) and truncating to O("), we can derive an equation whose
solutions constitute the family of eigenfunctions associated with the linearization of
(1) about the bump solution U(x). We begin by truncating (1) to O(") assuming



GHOSTS OF BUMP ATTRACTORS 2215

u is given by the above expansion and that the nonlinearity f(u) is given by the
Heaviside function (3), so

@ � (x; t)

@t
= � � (x; t) +

Z



w(x� y)H 0(U(y)� �) � (y; t)dy; (8)

and we can di�erentiate the Heaviside function, in the sense of distributions, by
noting H(U(x)� �) = H(x+ a)�H(x� a), so

�(x+ a)� �(x� a) =
dH(U(x)� �)

dx
= H 0(U(x)� �)U 0(x);

which we can rearrange to �nd

H 0(U(x)� �) =
�(x+ a)� �(x� a)

U 0(x)
=

1

jU 0(a)j
(�(x+ a) + �(x� a)) : (9)

Upon applying the identity (9) to (8), we have

@ � (x; t)

@t
= � � (x; t) + 


�
w(x+ a) � (�a; t) + w(x� a) � (a; t)

�
; (10)

where 
�1 = jU 0(a)j = w(0) � w(2a). One class of solutions, such that � (�a; t) =
� (�a; 0) = 0, lies in the essential spectrum of the linear operator that de�nes (10).
In this case, � (x; t) = � (x; 0)e�t, so perturbations of this type do not contribute
to any instabilities of the stationary bump U(x) [24]. Assuming separable solutions
� (x; t) = b(t) (x), we can characterize the remaining solutions to (10). In this case,
b0(t) = �b(t), so b(t) = e�t where � 2 R, and

(�+ 1) (x) = 
 [w(x+ a) (�a) + w(x� a) (a)] : (11)

Solutions to (11) that do not satisfy the condition  (�a) � 0 can be separated into
two classes: (i) odd  (a) = � (�a) and (ii) even  (a) =  (�a). This is due to the
fact that the equation (11) implies the function  (x) is fully speci�ed by its values
at x = �a. Thus, we need only concern ourselves with these two points, yielding
the two-dimensional linear system

(�+ 1) (�a) = 
 [w(0) (�a) + w(2a) (a)] (12a)

(�+ 1) (a) = 
 [w(2a) (�a) + w(0) (a)] : (12b)

For odd solutions  (a) = � (�a), the eigenvalue

�o = �1 + 
 [w(0)� w(2a)] = �1 +
w(0)� w(2a)

w(0)� w(2a)
= 0;

re
ecting the fact that (1) is translationally symmetric, so bumps are marginally
stable to perturbations that translate their position. Even solutions  (a) =  (�a)
have associated eigenvalue

o �1 + 
 [ww(2a)] = �
1 +

ww(2a)

w(0)� w(2a)
=w(2a)](0)� w(2a
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In anticipation of our derivations of amplitude equations, we de�ne the eigen-
functions at the criticality � = �c. Utilizing the fact that jU 0(�ac)j = w(0) and the
linear system (12a), we have that the odd eigenfunction at the bifurcation is

 o(x) =
1

w(0)
[w(x� ac)� w(x+ ac)] ; (13)

and the even eigenfunction is

 e(x) =
1

w(0)
[w(x� ac) + w(x+ ac)] : (14)

Note, this speci�es that  e(�a) =  o(a) = � o(�a) = 1. Furthermore, we will
�nd it useful to compute the derivatives

 0o(x) =
1

w(0)
[w0(x� ac)� w0(x+ ac)] ;

which is even ( 0o(�ac) =  0o(ac)), and

 0e(x) =
1

w(0)
[w0(x� ac) + w0(x+ ac)] ;

which is odd ( 0e(�ac) = � 0e(ac)). Lastly, we note that we will utilize the fact that,
for even symmetric functions w(x), w0(0) = 0 and w0(�x) = �w0(x), so  0o(�ac) =
 0e(�ac) = � 0e(ac) = jw0(2ac)j=w(0) = w0(�2ac)=w(0) = �w0(2ac)=w(0), noting
Amari’s conditions (iii) and (iv) [1].

2.2. Saddle-node bifurcation of bumps. Motivated by the above linear stabil-
ity analysis, we now carry out a nonlinear analysis in the vicinity of the saddle- 00 

)�) = 1
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The right hand side of (16) vanishes due to the formula for the even (14) eigen-
function associated with the stability of the bump Uc(x). At O("2), we obtain an
equation for higher order term u2:

L [Ao o + u2] =A0e e +A0o o + �

Z



w(x� y)H 0(Uc(y)� �c)dy (17)

� A2
e

2

Z



w(x� y)H 00(Uc(y)� �c) e(y)2dy;

where L is the non-self-adjoint linear operator

Lu(x) = �u(x) +

Z



w(x� y)H 0(Uc(y)� �c)u(y)dy: (18)

Both  o(x) and  e(x) lie in the nullspace N (L), as demonstrated in the previous
section by identifying solutions to (8). Thus, the  o terms on the left hand side
of (17) vanish. We can ensure a bounded solution to (17) exists by requiring that
the right hand side be orthogonal to all elements of the nullspace of the adjoint
operator L�. The adjoint is de�ned with respect to the L2
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where we have utilized  e(�ac) = 1 and w(2ac) �
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in the equation for Ae, we have

h’e; w �
�
H 00(Uc � �c) 2

e

�
i =

Z



Z



w(x� y)’e(x)H 00(Uc(y)� �c) e(y)2dydx

= 

X
a=�ac

 e(a)

Z



w(a� y)H 00(Uc(y)� �c) e(y)2dy:

(30)

The integrals in (30) are identical to those in (27), so it is straightforward to com-
pute, using (28) and (29), that

h’e; w �
�
H 00(Uc � �c) 2

e

�
i = 


�
2w0(2ac)

w(0)2
+

2w0(2ac)

w(0)2

�
=

4w0(2ac)

w(0)3
:

Thus, we can at last compute all the terms in (23), specifying that

dAo
dt

= 0; (31a)

dAe
d�

= ��� jw
0(2ac)j
w(0)2

Ae(�)2; (31b)

where we have noted the fact that w0(2ac) < 0 due to Amari’s conditions (iii) and
(iv) on the weight function w(x) [1].

Equation (31a) re
ects the translational symmetry of the original neural �eld
equation (1), so bumps are neutrally stable to translating perturbations  o re-
gardless of the bifurcation parameter �. On the other hand, as the bifurcation
parameter � is changed, the dynamics of the even eigenmode  e re
ect the rela-
tive distance to the saddle-node bifurcation where bumps are marginally stable to
expanding/contracting perturbations. When � < 0, there are two �xed points of

equation (31b) at Ae = �w(0)
p
j�=w0(2ac)j, corresponding to the pair of emerging

stationary bump solutions which are wider (+) and narrower (�) than the critical
bump Uc. As expected from our analysis in section 2.1, the wide bump is linearly
stable since a linearization of (31b) yields �+ = �

p
j� � w0(2ac)j=w0 Td [(j)]TJ
ET
q
1 0is linearly
s9]TJ/F7 6.9738 Tfstance to 5279 1.494 Td [(<.352 )-314(the)-314(pair)-314(o352 0 Td [(�)]TJ/F8 9.9626 Tf [(�))-398(315(of)16f 7.7-13ter)8 9.9n9.9626802 -371-316(a)-71-(line71-zation)-3ne71-un rg 1 0 071-
 [396 0 Tde-824(On)-460(the)-460f 2.358 -6.577  [(=)]TJ2
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dAo
dt

=
h’o; w �

�
f 00(Uc) 

2
e

�
i

2h’o;  oi
Ae(�)2; (34a)

dAe
d�

= �� h’e; w � f
0(Uc)i

h’e;  ei
+
h’e; w �

�
f 00(Uc) 

2
e

�
i

2h’e;  ei
Ae(�)2: (34b)

We can derive the coe�cients in the system (34) by computing the inner products
therein. To do so, we must choose a speci�c nonlinearity, such as the sigmoid (2),
and a weight kernel. For illustration, we consider the cosine kernel w(x) = cos(x)
on the ring x 2 
 = [��; �] with periodic boundaries. As shown in previous
studies, the bump solution Uc(x) = Ac cosx while the eigenmodes  o(x) = sin(x)
and  e(x) = cos(x) [26,35,52]. Since L j � 0 for j = o; e, this means

sin(x) =

Z �

��
cos(x� y)f 0(Ac cos(y)) sin(y)dy = sinx

Z �

��
sin2(y)f 0(Ac cos y)dy;

where we have used cos(x� y) = cosx cos y + sinx sin y, and

cos(x) =

Z �

��
cos(x� y)f 0(Ac cos(y)) cos(y)dy = cosx

Z �

��
cos2(y)f 0(Ac cos y)dy;

so that we can writeZ �

��
sin2(y)f 0(Ac cos y)dy � 1;

Z �

��
cos2(y)f 0(Ac cos y)dy � 1: (35)

The identities (35) allow us to compute

h’o;  
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3. Stochastic neural �elds near the saddle-node. We now study the impact of
stochastic forcing near the saddle-node bifurcation of bumps. Our analysis focuses
on the spatially extended Langevin equation with additive noise (5). Guided by our
analysis of the deterministic system (1), we will utilize an expansion in the small
parameter ", which determines the distance of the system from the saddle-node.
To formally derive stochastic amplitude equations, we must specify the scaling of
the noise amplitude � as it relates to the small parameter ", as this will determine
the level of the perturbation hierarchy wherein the noise term dW will appear. We
opt for the scaling � = "5=2, as this introduces a nontrivial interaction between the
nonlinear amplitude equation for Ae and the noise.

It is important to note that our derivations are only carried up to O("2) in the
hierarchy of the regular perturbation expansion in ". Were we to continue this
expansion further, we would likely �nd that the � = "5=2 noise term does indeed
shift the location of the bifurcation at higher order as in [2, 30]. Thus, as the
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dAo(t) =
h’o; w �

�
H 00(Uc � �c) 2

e

�
i

2h’o;  oi
Ae(�)2dt� h’o;dŴ i

h’o;  oi
(43a)

dAe(�) =� � h’e; w � [H 0(Uc � �c)]i
h’e;  ei

+
h’e; w �

�
H 00(Uc � �c) 2

e

�
i

2h’e;  ei
Ae(�)2 (43b)

� h’e;dŴ i
h’e;  ei

:

Utilizing the formulas for H 0(Uc � �c) (9) and H 00(Uc � �c) (24) we derived in the
previous section, we can simplify the expressions in (43). Additionally, we make use
of the fact that

dŴo(�) := �h’o;dŴ i
h’o;  oi

= �1

2

h
 o(�ac)dŴ (�ac; �) +  o(ac)dŴ (ac; �)

i
=

dŴ (�ac; �)� dŴ (ac; �)

2
;

dŴe(�) := �h’e;dŴ i
h’e;  ei

= �1

2

h
 e(�ac)dŴ (�ac; �) +  e(ac)dŴ (ac; �)

i
= �dŴ (ac; �) + dŴ (�ac; �)

2
:

Noting that hdŴ (x; �)dŴ (y; � 0)i = C(x � y)�(� � � 0)d�d� 0, it is straightforward

to compute the variances hŴo(�)2i = Do� = (C(0) � C(2ac))�=2 and hŴe(�)2i =

2

h
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t

Figure 4. Noise-induced extinction of bumps in the stochastic
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Figure 5. (A) Potential function (46) associated with the sto-
chastic amplitude equation (45) has zero (m > 0); one (m � 0); or

two (m < 0) extrema - associated with equilibria of _A = �m�A2.
When m < 0, crossing the saddle point requires stochastic forc-
ing. (B) Mean time �tb until bump extinction is approximated by a
mean �rst passage time problem of the stochastic amplitude equa-
tion (45). Numerical simulations (circles) of the full system (5) are
well approximated by this theory (line) given by (51) for " = 0:6.

The basin of attraction of A =
p
m is given by the interval (�

p
m;1). When

D > 0, 
uctuations can induce rare transitions on exponentially long timescales
whereby A(�) crosses the point A = �

p
m, leaving the basin of attraction. For the

non-generic case m = 0, the timescale of departure scales algebraically [50]. When

m > 0, noise simply modulates the 
ows of the deterministic equation _A = �m�A2,
leading to an average speed-up in the departure from the bottleneck. In general,
we consider solving the �rst passage time problem as an escape from the domain

(��;1) where � := jw0(2ac)j
w(0)2 (equivalently where Ae = �1) [22]. To do so, we

impose an absorbing boundary condition at ��: p(��; �) = 0. Now let T (A)
denote the stochastic �rst passage time for which (45) �rst reaches the point ��,
given it started at A 2 (��;1). The �rst passage time distribution is related to
the survival probability that the system has not yet reached ��:

S(�) �
Z 1
��

p(A; �)dA;

which is S(�) := Pr(� > T (A)), so the �rst passage time density is [22]

F (�) = �dS

d�
= �

Z 1
��

@p

@�
(A; �)dA:

Substituting for the expression for @p=@� using the Fokker-Planck equation (47)
and the formula for the 
ux (48) shows

F (�) =

Z 1
��

@J(A; �)

@A
dA = �J(��; �);

where we have utilized the fact that limA!1 J(A; �) = 0. Thus, the �rst pas-
sage time density F (�) can be interpreted as the total probability 
ux through
the absorbing boundary at A = ��. To calculate the mean �rst passage time
T (A) := hT (A)i, we use standard analysis to associate T (A) with the solution of
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the backward equation [22]:

�(m+A2)
dT
dA

+
D

2

d2T
dA2

= �1; (49)

with the boundary conditions T (��) = 0 and T 0(1) = 0. Solving (49) yields the
closed form solution

T (A) =
2

D

Z A

��

Z 1
y

�(z)

�(y)
dzdy; (50)

where

�(A) = exp

�
2 [V (��)� V (A)]

D

�
;

and V (x) is the potential function (46). Explicit expressions for the integral (50)
can be found in some special cases [42, 50]. For our purposes, we simply integrate
(50) numerically to generate theoretical relationships between the mean �rst passage
time and model parameters. For comparison, we focus on the case the weight func-
tion w(x) = cos(x) and the correlations C(x) = cos(x), so that Uc(x) =

p
2 cos(x),

ac = �
4 , w(0) = 1, w0(2ac) = �1, C(0) = 1, and C(2ac) = 0. Therefore, � = 1,

m = �, D = 1=2. This allows us to write the formula (50) at A = 0 as

T (0) = 4

Z 0

�1

Z 1
y

exp

�
4

�
z3 � y3

3
+ �(z � y)

��
dzdy: (51)

Lastly, note that by rescaling time t = "� , we have that the mean �rst passage time
in units of t will be �tb = T (0)=". We compare our theory (51) with the results of
numerical simulations of the full stochastic neural �eld (5) in Fig. 5B. Note there is
some discrepancy between our numerical simulations and theory as m is decreased.
One of the primary reasons for this deviation is likely because of the moderate level
of noise (" = 0:6) used in comparison to the small parameter assumption (" � 1)
using in the theory we have developed. Any minor mismatch will be exacerbated by
the fact that mean �rst passage times for escape problems depend exponentially on
parameters like noise amplitude and well depth, as in (51). Nonetheless, the theory
does provide a rough estimate of the mean �rst passage times for smaller values of
the parameter m.

4. Discussion. We have developed a weakly nonlinear analysis for saddle-node bi-
furcations of bumps in deterministic and stochastic neural �eld equations. While
most of our analysis has focused upon Heaviside �ring rate functions, we have also
demonstrated the techniques can easily be extended to arbitrary smooth nonlineari-
ties. In the vicinity of the saddle-node, the dynamics of bump expansion/contraction
can be described by a quadratic amplitude equation. For deterministic neural �elds,
this low dimensional approximation can be used to approximate the trajectory and
lifetime of bumps as they slowly extinguish. To do so, we focused on the initial
time epoch in the bottleneck surrounding the ghost of the critical bump Uc(x). In
stochastic neural �elds with appropriate noise scaling, a stochastic amplitude equa-
tion for the even mode of the bump can be derived. Importantly, we must choose
the noise amplitude to scale as � = "5=2, in order for the noise term to appear in the
stochastic version of the quadratic amplitude equation. We then cast the lifetime
of the bump in terms of a mean �rst passage time problem of the reduced system,
which is valid for the noise scaling we have chosen.



GHOSTS OF BUMP ATTRACTORS 2229

Our work extends recent studies that have derived low-dimensional nonlinear
approximations of neural �eld pattern dynamics in the vicinity of bifurcations
[5, 7, 20, 30, 35, 36]. As in our work, most of these previous studies derived ap-
proximations where the location of the bifurcation was una�ected by noise terms.
On the other hand, Hutt et al. showed that noise can in fact shift the position of
Turing bifurcations in neural �elds, and the amplitude of the bifurcation threshold
shift was proportional to the noise variance [30]. Were we to have carried the hier-
archy out to higher order, we would have found such a shift in the case we studied.
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