Preliminary Exam

Partial Di erential Equations

1:30 - 4:30 PM, Fri. Jan. 10, 2019 Room: Newton Lab (ECCR 257)

Student ID:

#	possible	score
1	25	
2	25	
3	25	
4	25	
5	25	
Total	100	

There are five problems. Solve four of the five problems. Each problem is worth 25 points.

A sheet of convenient formulae is provided.

1. Quasilinear first order equations.

Consider the Cauchy problem

$$u_t + (u + u^2)u_x = 0, x R, t > 0,$$

 $u(x, 0) = f(x), x R.$ (1)

- (a) Suppose $f C^1(\mathbb{R})$ and f, f are bounded functions. Prove that a continuously di erentiable solution u(x,t) to Eq. (1) exists and is unique for $x \mathbb{R}$, t [0,t) for some t > 0.
- (b) Provide an additional, necessary condition on f for the solution to Eq. (1) to exist for all t > 0, i.e., for u(x, t) to remain continuously di erentiable for all t > 0.

2. Heat Equation.

Let $D = (0, L) \times (0, T]$ and assume that $U = C(\overline{D}) = C^2(D)$ is a solution to

$$u_{t}(x, t) = g(x)u_{xx}(x, t) + F(x, t), \qquad 0 < x < L, \quad 0 < t \quad T.$$

$$u(x, 0) = f(x), \qquad 0 < x < L, \qquad 0 < t \quad T.$$

$$u(0, t) = r(t), \qquad 0 < t \quad T, \qquad 0 < t < T, \qquad 0 <$$

where g(x) > 0 for all x (0, L).

(a) Let $B = \bar{D} \backslash D$. If F 0, prove that

3. Wave Equation. Consider the initial boundary value problem (IBVP):

$$u_{tt} = c^2 u_{xx}$$
 $x > 0, t > 0,$
 $u(x,0) = 0$ $x > 0,$
 $u_t(x,0) = (x)$ $x > 0,$
 $u_x(0,t) = 0$ $t > 0,$