Thursday August 24, 2017, 10AM -1PM

There are five problems. Solve any four of the five problems. Each problem is worth 25 points.

On the front of your bluebook please write: (1) your name and (2) a grading table. Please start each problem with a new page. Text books, notes, calculators are NOT permitted. A sheet of convenient formulae is provided.

______·

1. (First order equations)

(a) (18 points)
Solve the first-order initial value problem

$$e^{x}\frac{@u}{@x} + ($$

(b) When = 0, the PDE reduces to the ODE

$$(t+1)\frac{du}{dt} = u,$$

its general solution is

$$u = u_0(x) (t + 1)$$

with $u_0(x)$ independent of t₀(

(b) As $t \ne 1$, the solution $u(x,t) \ne 0$. Since (t) is nonzero only on a finite interval of t, the approximate solution for large t can be written as

$$u(x,t) = \frac{e^{R_1} ()d}{x + x_0} b_1 e^{-2t} \sin \frac{x}{L},$$

i.e. it is determined by the lowest mode $k_1 = -L$. The characteristic time of convergence to zero is $\sim L^2 = (-2)$ and the time T is determined by u(L=2, t+T) = u(L=2, t) = 2, i.e.

T
$$\frac{L^2}{2}$$
 In 2.

3. (Fourier series)

n

(a) (10 pts)

Show that the pointwise convergent series

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^{1=2}}$$

cannot converge uniformly to a square integrable function f in [- ,).

(b) (15 pts)

Let f(x) be 2 periodic and piecewise smooth. Prove that its Fourier series converges uniformly and absolutely to f.

Solution:

(a) Suppose the series converged uniformly to a square integrable function f. The Fourier coe cients of f are

4. (Wave type equations)

Consider

$$u_{tt} - c^2 u_{xx} + a u_t + \frac{a^2}{4} u = 0$$
, $0 \le x \le L$, $t > 0$,
 $u(x, 0) = f(x)$, $u_t(x, 0) = g(x)$, $u(0, t) = u(L, t) = 0$,

where f(x), g(x) are integrable and c > 0 and a > 0 are constants.

(a) (15 points)

Solve the above initial boundary value problem.

Hint: Look for solutions of the form $u(x, t) = e^{-\frac{a}{2}t}w(x, t)$.

(b) (5 points)

Derive the energy relation

$$\frac{dE}{dt} = -2a \int_{0}^{Z_{L}} u_{t}^{2} dx, \qquad (5)$$

$$E(t) = \int_{0}^{Z_{L}} u_{t}^{2} + u_{x}^{2} + \frac{a^{2}}{4} u^{2} dx.$$

What physical e ect do the additional terms aut and a²u=4 in (4) represent?

(c) (5 points)

)

Using energy relation (5), prove that the solution found in part (5 po14.968-1.793Td[(t)]TJ/3h7(0x0).

The boundary conditions u(0,t)=u(L,t)=0 imply $u_t(0,t)=u_t(L,t)=0$. Performing integration-by-parts on the second term and applying these boundary conditions yields the desired energy relation

$$\frac{1}{2}\frac{d}{dt} \int_{0}^{Z_{L}} u_{t}^{2} + u_{x}^{2} + \frac{a^{2}}{4}u^{2} dx = -a \int_{0}^{Z_{L}} u_{t}^{2} dx.$$

The energy E(t) is non-increasing in time, i.e. $E(t_2) \in E(t_1)$ for $t_2 > t_1$, indicating some dissipative force (e.g. friction, vibration) is modeled by the terms au_t and $a^2u=4$.

(c)