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Instructions. You have three hours to complete this exam. Submit solutions to four
(and no more) of the following six problems. Please start each problem on a new page.
You MUST prove your conclusions or show a counter-example for all problems unless



(c) Use Newton’s method on f(x) = ex − sin(x). Use arguments similar to those in (a) to
argue that f ′(x) 6= 0 for x ∈ [−π/2, π/2].

2. Linear Alegbra.

(a) Let A be a real n × n matrix with distinct eigenvalues such that

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn| ≥ 0

with corresponding eigenvectors {vj



(b) We need to rewrite yn+1 so that it does not involve xn+1. We do this by simply plugging
in the definition of xn+1 to find yn+1 = 2xn + yn.
Then the linear system iteration is

[
xn+1

yn+1

]

=

[
1 1
2 1

] [
xn

yn

]

.

(c) We know that the power iteration converges to the eigenve



for some η ∈ [a, b] by the mean value theorem. (See for example Chapter 1 Thm
1.3 of Atkinson Numerical Analysis text.) The trapezoidal rule is given by I1(f) =
f(a)+f(b)

2 (b − a) and the error term is E1(f) = −f ′′(η) (b−a)3

12 .

(b) In(f) = h
[

f(x0)
2 + f(x1) + · · · + f(xn−1) + f(xn)

2

]

(c)

En(f) ≤



So we need to chose a and b so that l1 satisfies the first two conditions. After some

algebra you find a = 2



Solution (b)
Plug in the right hand side to find

yn+1 = yn − αhλyn + βh(−λ(yn − λγhyn)) = (1 − (α + β)hλ + βγh2λ2)yn.

We know that for second order we require α + β = 1 and 2βγ = 1 so that in order for the
sequence to be bounded

|1 − z +
z2

2
| ≤ 1, z = hλ.

Thus

−1 ≤ 1 − z +
z2

2
≤ 1.

or
z2

2
− z ≤ 0 ⇒ z ≥ 0, z ≤ 2.

That is h ≤ 2
λ

.

To find the error estimate note that y(t) = e−λt so that

y(tn) − yn = e−λtn − (1 − hλ +
h2λ2

2
)n = (e−λh)n − (1 − hλ +

h2λ2

2
)n.

Recall that

xh:
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Figure B

Solid lines represents the numerical solution and dashed lines the exact solution.

(b) Let D denote one of the difference operators above. Then if we discretize in time using
the trapezoidal rule we have (the superscript now denotes the time index)

vn+1
j − vn

j

∆t
+ D

(

vn+1
j + vn

j

2

)

= 0.

Show that with this timestepping the spatial discretization corresponding to “Figure A”
satisfies ‖vn+1‖2h = ‖vn‖2h while the discretiztion corresponding to “Figure B” satisfies
‖vn+1‖2h ≤ ‖vn‖2h. Hint: First find α+ and / or α− such that D±vj = D0vj +α±D+D−vj .

Solution (a):
The continuous problem can be treated by Fourier series. Assume that the expansion of the
initial data is

u(x,



Solution (b):
Multiply by vn+1

i + vn
i and sum to find

‖vn+1‖2h − ‖vn‖2h +
∆t

2
(vn+1 + vn, D(vn+1 + vn))h = 0.

First note that for any periodic grid functions r, s we have (r, D0s) = −(D0r, s) (just write
out the expressions term by term and use the boundary conditions) so that

(vn+1 + vn, D0(vn+1 + vn))h = 0,

and the first part follows.

Second, as indicated by the hint, we have the identity

D−vj = D0vj − h

2
D+D−vj .

The second part then follows by noting that (r, D+s) = −(D−r, s) so that for scheme (1) we
have

‖vn+1‖2h − ‖vn‖2h +
∆th

4
(D−(vn+1 + vn), D−(vn+1 + vn))h = 0.

The

‖vn+1‖2h = ‖vn‖2h − ∆th


