1. Nonlinear Equations Given scalar equation, f(x) = 0,

(a) Describe I) Newtons Method, 11) Secant Method for approximating the solution.

(b) State su cient conditions for Newton and Secant to converge. If satisfied, at what rate
will each converge?

(c) Sketch the proof of convergence for Newton’s Method.

(d) Write Newton’s Method as a fixed point iteration. State su cient conditions for a general
fixed point iteration to converge.

(e) Apply the criterion for fixed point iteration to Newton’s Method and develop an alternate
proof for Newton’s Method.

Solution

(a) Newton’s method: Given X, let

_ . _ F(xn)
Xn-l—l = Xn f (Xn)’

Secant Method: Given X, Xy, let

(Xn - Xn—l)
f(xn) - f(xn—l)

(b) Newton’s Method: Let f(a) = 0. Assume that there exists an interval E = [a —n, a+n]
such that f(x), f (x) and ¥ (x) are continuous on E, and

Xni1 = X, — F(X,) n=1.

max, |f (X)|

<
2min, [F oo =V

and nM < 1.0. Then, for any X, E, Newton’s method will converge with rate 2.0.
Secant Method: Under the same gssumptions, if X, and x; are in E, the the Secant
Method will converge with rate 4> 1.62.

(c) See Atkinson, pages 59-60.

(d) Define

_,_ T
g(x) =x W



Newton’s method can be cast as: Given X



Numerical quadrature:

2. Assume that a quadrature rule, when discretizing with n nodes, possesses an error expansion of
the form
_C  C  GC3
l_ln_7+ﬁ+ﬁ+'“

Assume also that we, for acertain value of n, have numerically evaluated I, , 12, and I3..
a Derive the best approximation that you can for the true value | of the integral.

b. The error in this approximation will be of the form O(n~P) for a certain value of p. What
isthisvaluefor p?

Solution:

a With three numerically evaluated values, we can solve for three variables. For these we
want to choose I, ¢; and ¢, at which point we only care about the obtained value for 1.
Abbreviating % =d; and % = d2, we thus obtain the relations

Li-l, = di + dp
L -1 1
I 1-lxn =3dy +3d2
A 1-13 =3d; +5d2
or, written in the usual linear system form (separating 'knowns' from ‘'unknowns)
1-1-11|1 In
1-3 -7 || di|=] Iz
1 _% _% d2 |3n
from which follows
| =2(In—8l2n +9l3,).
b. With the first two termsin the error expansion eliminated, it will continue from the third

term and onwards (with modified coefficients), i.e. the error in the approximation above
will be of theform O(n~%).



| nter polation / Appr oximation:

3. The General Hermite interpolation problem amounts to finding a polynomial p(x) of degree
-1+-2+...+-,—1 that satisfies
POx) =y, i=0,1,..,-1—-1
PO =y, i=0,1,..,-n—1,
where the superscripts denotes derivatives, that is, we specify thefirst -j — 1 derivatives at the
point x;j, for j = 1,2, ...,n. Show that this problem has a unique solution whenever the x; are
distinct.
Hint: Set up the linear system for a small problem, recognize the pattern, and prove the general
result.
Solution:

Inall, thereare -1 +-2+... +-5 =N conditions. Let the interpolation polynomial of degree
N-1 bep(X) = .o+ .1x+... +.n-1xN"1 Each of the given conditions form onelinein alinear
system for the coefficients:

(1 x1 £ £ .o ] [y9]

01 ££ N-2 | y§
- £ £ 8 |=| 8

1 x» £ £ xyt 8 8

L &8 888 8 L.v1d L 8

Thetask isto show that thisN % N coefficient matrix is nonsingular, as thiswill imply both
existence and uniqueness. One way to do thisisto let the right hand side (RHS) be zero, and
show that the problem then has only the zero solution.

With the RHS zero, the conditions that are imposed require p(x) to have azero of degree -; at
X1, i.e. afactor (x —x1); then likewise afactor of (x—Xx2)~2, etc. These required factors will
imply that the polynomial p(x) will have atotal of N zeros (counting multiplicities). Thisisone
above the actual degree of p(x), implying that all the coefficients of p(x) must be zero.




4. Linear Algebra
Consider the n > n, nonsingular matrix, A. The Frobenius norm of A is given by

Ap= (e )

(a) Construct the perturbation, dA, with smallest Frobenius norm such that A — 0A is
singular. (Hint: use one of the primary decompositions of A.)



(b)

(©)

(d)

Clearly,
A—-0A=UEZEZ-NV

is singular.
Denote the columns of U = [u;,U,,...,u,]Jand V = [v4,V,,...,V,]. The fact that U and
V are unitary implies that u, = v, =1, forj=1,...,n. We can write

0A =0,U,YV,
and the Frobenius norm is

0A % =07 3 3 I Pl = o,

or
0A r=0,

Suppose 0A is any perturbation such that A—0A is singular. Then, there exists a vector
of unit length, denoted by w, such that

Aw = 0Aw.

Now,

min—— = min Aw =g,

z:O VA w =1

Thus, the largest singular value of A must be greater than or equal to o,. Since
multiplication by a unitary matrix does not change the Frobenius norm, the Frobenius
norm of a general matrix is

A p=( o)

Thus,
0A =o0,.

The answer depends on A. If the smallest singular value of A is unique, then the smallest
perturbation is unique. Any other perturbation, dA for which A — dA is singular will,
itself, have a second nonzero singular value, and thus, a larger Frobenius norm. If there
are multiplies of the smallest singular values of A, then there are multiple choices of A
with Frobenius norm equal to o,,.



Numerical ODE:

5. Consider using forward Euler (same as AB1; Adams-Bashforth of first order) as a predictor, and
the trapezoidal rule (same as AM2; Adams Moulton of second order) as a corrector for solving
the ODE Yy’ =f(t,y).

a Write down the explicit steps that need to be taken in
order to advance the numerical solution from timet,
totime th =t +k

b. Determine the order of the combined scheme. In case
you know atheorem that gives the order directly, you
may quote thisin its general form, i.e. do not just
state the answer in the present special case.

C. The figure to the right illustrates the stability domain
of the scheme. Prove that (-2, 0) is the leftmost point



6. Partial Di erential Equations
Consider the steady-state, advection-di usion equation in one space dimension:

—0d,(a(x)0,u(x)) + b(x)d,u = T, x [0,1]

with boundary conditions u(0) = u(1) = 0 and the assumption that a(x) is continuous and
a(x) >0 for x [0,1]

(a) Describe the finite di erence (FD) method for approximating the solution using 1) Cen-
tered Di erences, 11) Upwind Di erences on the advection term. Let h represent the mesh
spacing and assume a uniform mesh. In each case above, describe the linear systems, As
and As, that the FD method yields. ‘

(b) Assume a > 0 and b > 0 are constant. State a relationship between a, b, and h that
assures the eigenvalues of the linear system are real for 1) Centered Di erences, Ags and
I1) Upwind Di erences, As..

(c) For constant a > 0, b > 0, use Gershgorin bounds to establish bounds on the eigenvalues
of As, the upwind di erence matrix.

Now consider the parabolic equation (assume a > 0 and b > 0 are constant)
atu = ad,,u(x) —ho,u, x [0,1]

(d) Write the Forward Euler scheme for this equation using 1) Centered Di erences I1)
Upwind Di erences for the advection term.



where &, Doy, % 44].
The Centered Di erence stencil for the second term is

—uQe—1) +Uu(e41)
2h

b(>) =Db0e)u (e) + ;l;b(x“)u(:”(rr),

where ey, %]
The Upwind Di erence stencil for the second term is, for b(>) > 0,

560~ T ey o) — Dbge)u (),

where n [x_1,x] and, for b(>¢) <0,

560 ~ OO ey ) + Thoeu (),

where [, % q].
With centered di erences, the linear system is tridiagonal, denoted by

A = thtri —(a( —h/2) + ;b(x~)); (@a(e —h/2) +a(e +h/2)); —(a(e +h/2)— gb(x»))



(c) For upwind di erences and constant coe cients, a B>



