Problem 1:

- (a) What does it mean for an operator to be compact? A linear operatorT : H ! H is compact if T(B) is a precompact subset ofH for every bounded subsetB H (recall \precompact" means its closure is compact, or equivalently, that every sequence has a convergent subsequence). That is to say for every bounded sequence_n (H, then (Tx_n) has a convergent subsequence.
- (b) Discuss convergence: Note that the problem doesn't ask the student to prove if the limit is in B(H), so this may be assumed.
 - (a) We show convergence in norm is su cient.

Solution 1 Let (x_m) H be a bounded sequence with $x_m k$ B for all m. We will show that there is a subsequence (n_k) such that (Ax_{m_k}) is Cauchy, and since H is complete, therefore it is convergent. The only tricky part is dening m_k . Since A_1 is compact, there is a subsequence $(k_{(1)})$ such that $A_1(x_{m_{k(1)}})$ is convergent (to, say, y_1). Since A_2 is compact, there is a subsequence $m_{k(2)}$ of $(m_{k(1)})$ such that $A_2(x_{m_{k(2)}})$ is convergent to y_2 (and $A_1(x_{m_{k(2)}})$ is still convergent to y_1 , since this is a subsequence of the subsequence).

For each k, we have a subsequence of the subsequence associated with 1. We can take the kth term of this new subsequence, and make this into a master subsequence (m_k). This is known as the diagonalization trick . Since this master subsequence is bounded, and kA_n Ak ! 1 , an =3 argument shows that the sequence y_k) is Cauchy, and thus there is somey with y_k ! y, and then again using an =3 argument we see that Ax_{m_k} ! y, thus proving that A is a compact operator.

Solution 2 A slicker proof is using the fact that a compact operator can be arbitrarily well-approximated by a nite-rank operator; using this, the proof is trivial (basically, that's what this problem is trying to show).

Solution 3 Use the fact that a compact operator (on a Hilbert space) maps weakly convergent sequences to strongly convergent ones, i.e. Aif_h is compact, then $x_k * x$ implies $A_n x_k ! A_n x$. Thus we only need to show $Ax_k ! Ax$. We do this with the usual triangle inequalities:

 kAx_k Axk kAx_k A_nx_kk + kA_nx_k A_nxk + kA_nx Axk

and we can make all terms small. But note that we require norm convergence and boundedness in order for the rst and third terms to be BOTH small. If we have only strong convergence, then we can make them small separately (by choosing large enough) but not necessarily have both of them small. The middle term is arbitrarily small by choosing k su ciently large.

Solution 4 Let B H be bounded, so for everyn, $A_n(B)$ is pre-compact and hence totally bounded. It is su cient TJ/F33 10.9091 Tf 31.667 0 Td [()-278(>)]TJ/F15 10.9091

For any x 2 B, we have

$$k(A_n A)xk < = (3M)kxk = 3$$
:

Hence if we pick an arbitrary point $A(x) \ge A(B)$, it is within =3 of the point $A_n(x) \ge A_n(B)$. By the triangle inequality, since (x_i) is an =3 net for $A_n(B)$, there is some A_i that is within of A(x).

Explicitly, for $x \ge B$, there is somex_i such that

$$kAx \quad Ax_ik \quad k \quad Ax \quad A_nxk + kA_nx \quad A_nx_ik + kA_nx_i \quad Ax_ik$$
$$< = 3 + = 3 + = 3 = :$$

Hencef Ax_ig is a nite -net for A(B), and since was arbitrary, this means A(B) is totally bounded, hence pre-compact.

(b) We show strong convergence is not su cient. Take A_n to be de ned as in Example 5.46 in the book, where for x = (x₁; x₂; ...; x_n; x_{n+1}; ...)

Now, to evaluate the limit of the integrand, use standard techniques (e.g., L'Hôpital's rule) to get a value of 0 for x 2 (0; 1] and 1 for x = 0. Integrating this function gives a value of 0.

(b) The partial sums s_n are monotone since b_k and r are nonnegative. The partial sums are also bounded, since b_k) is bounded (say, b_k M for all k), and r < 1, so that

$$s_n = M \sum_{k=1}^{N} r^k = \frac{Mr(1-r^n)}{1-r} = \frac{Mr}{1-r}$$

Thus we have a bounded, monotone sequence of real numbers, so the Monotone Convergence Theorem says this sequence must converge. (Note that it need not converge to $Mr = (1 \ r)$, since M was just a bound on (b_k) ; rather, it converges to $r = (1 \ r) \limsup_k b_k$). em 4:

Problem 4:

- (a) $H_0(x) = 1$, $H_1(x) = 2x$, $H_2(x) = 4x^2$ 2, and $H_3(x) = 8x^3$ 12x.
- (b) Follow the hint and let $v(x) = e^{x^2}$, so the term in the hint is (where $v^{(m)}$ is the mth derivative of v)

$$Z = \frac{Z}{R} H_{n}(x)v^{(m)} dx = H_{n}(x)v^{(m-1)} = \frac{Z}{R} R^{2nH_{n-1}(x)v^{(m-1)}} dx$$
$$= \frac{2nH_{n-1}(x)v^{(m-1)}}{R} dx$$
$$= \frac{Z}{R} H_{n-1}(x)v^{(m-1)} dx$$
$$= \frac{Z}{R} H_{n-1}(x)v^{(m-1)} dx$$

and $H_0(x) = 1$. If n < m, integrating once more gives 0 since and its derivatives approach zero as goes to 1 , and this proves the orthogonality.

- (c) This follows directly from part (b), since we have just moved the weight function to '.
- (d) Because this is an orthonormal basis, we just calculate

$$f_8 = \int_{R}^{L} f(x) c_8'_8(x) dx$$
:

Problem 5:

(a) Let 0 2 int C and x 2 X. Then there is an > 0 such that B (0) C, and in particular $_2$ 2 C, so $_C(x)$ 2= < 1. Now let C be $_{C}(y) = 1$ and $_{C}(y) = 1$. Then $x^{\ell} = x = 2$ C and 2 int (x) (d) 8x 2 C, and thus the hyperplane dened by fx 2 X : (x) = (d)g separatesd and C.