Applied Analysis Preliminary Exam

10.00am{1.00pm, August 20, 2013

Problem 1: Show that the non-linear integral equation:

$$(\) = \cos^2(\) + \int_0^{\infty} e^{-2(\)} ds, \qquad \in [0, \infty)$$

has a solution in $C^1([0,\infty),\mathbb{R})$.

Problem 2: Calculate the limit. **Justify** your answer.

$$\lim_{n \to \infty} \sum_{k=1}^{n} \sin \left(\pi \sqrt{\frac{k}{n}} \right) \frac{1}{\sqrt{kn}}.$$

Problem 3: Given a self-adjoint compact operator $A: \ell^2 \longrightarrow \ell^2$, we de ne, for $\lambda \in \mathbb{R}$,

$$E_{\lambda} = \overline{\operatorname{Span}\{\ \in \ell^2 \mid A = \mu \text{ for some } \mu \leq \lambda\}}$$

and let

$$E^{\lambda} = E_{\lambda}^{\perp}$$

denote the orthogonal complement of E_{λ} .

- (a) Show that E^1 is nite dimensional and A maps it to itself.
- (b) In general, for what kind of value λ can you guarantee that:
 - (1) E_{λ} is nite dimensional

 - (2) E_{λ} is in nite dimensional (3) E^{λ} is nite dimensional
 - (4) E^{λ} is in nite dimensional

Problem 4: Let H be a Hilbert space with an orthonormal basis $(\varphi)_{=1}^{\infty}$. Suppose further that $(\lambda)_{=1}^{\infty}$ is a sequence of non-negative real numbers such that $\lambda \to \infty$ as $j \to \infty$. De ne for any nite positive integer n, the operator A $(t) \in \mathcal{B}(H)$ via