A_{2} , A a : P, a E y a

Department of Applied Mathematics, University of Colorado at Boulder 10.00am { 1.00pm, August 17, 2010

P \triangleright **b** • 1: Set = [1, 1] and de ne for \mathcal{Z} () the operator via

$$[\quad](\overset{t}{\cancel{i}}) = -\underbrace{t}(1 \quad \overset{t}{\cancel{i}}) - \underbrace{t}(\overset{t}{\cancel{i}}).$$

Set

$$= f : 2 ()g.$$

- (a) Find a function \mathcal{Z} () such that $\begin{bmatrix} & t \\ & \end{bmatrix}$ ($\frac{t}{\lambda}$) = $\frac{t}{\lambda}$.
- (b) Show that ().
- (c) For a function \mathcal{Z} , give an explicit formula for a function \mathcal{Z} () such that = . (Your formula may involve unevaluated integrals, and/or sums of unevaluated integrals.)
- (d) Describe the topological closure $\overline{}$ of in (). (For any $\overline{}$, the equation = has a solution () when the di erential operator is de ned in a \weak'' sense.)

Hint for Problem 1: De ne for $= 0, 1, 2, 3, \dots$ the functions $_n$ via

(1)
$$n^{\binom{t}{j}} = \sqrt{\frac{2+1}{2}} \frac{1}{2^n !} \left(-\frac{t}{j} \right)^n {t \choose j}^n .$$

You may use that

$$(2) n = (+1) n,$$

and that $f_n g_n^1$ is an orthonormal basis for ().

- P **b** 2: Specify which of the following statements are true. No justi cation necessary.
- (a) The set of even functions is dense in ([1, 1]).
- (b) The set of polynomials is dense in ([1, 1]).
- (c) The set of simple functions is dense in (). (Recall that a *simple function* is a function of the form $=\sum_{j}^{J} {}_{j} \chi_{\Omega_{j}}$ where is a nite integer, ${}_{j}$ is a scalar, and ${}_{j}$ is a measurable subset of .)
- (d) The set of bounded continuous functions is dense in $^{-1}$ ().
- (e) The set ([1, 1]) is dense in ([1, 1]).
- (f) The space $p(\cdot)$ is separable for all p such that 1 p < 1.
- (g) The space $p(\mathbb{N})$ is separable for all p such that 1 + p = 1.
- (h) The space ([1, 1]) is separable.