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Problem 1: Set [=[ 1, 1] and de ne for 2 2(’) the operator via
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(a) Find a function ,2 () such that[ J(%) = Y
(b) Show that 2([).

(c) For a function /2 , give an explicit formula for a function 2 2( ) such that
formula may involve unevaluated integrals, and/or sums of unevaluated integrals.)

(d) Describe the topological closure  of in 2(‘:). (For any 7 2 , the equation
solution 2 2([) when the di erential operator is de ned in a \weak" sense.)

Hint for Problem 1: De ne for¥ =0, 1, 2, 3, ... the function®@®,, via
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You may use that
) ‘%0, =% ¢ +1f0,,
and that Qpngr}zo is an orthonormal basis for 2([).
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Problem 2: Specify which of the following statements are true. No justi cation necessary.

(a) The set of even functions is dense in  2([ 1, 1]).

(b) The set of polynomials is dense in  2([ 1, 1]).

(c) The set of simple functions is dense in  2(R). (Recall that a simple function is a function of the
form = Z;.]ZI e Xos; Where ./ is a nite integer, ¢; is a scalar, and ; is a measurable subset of R.)

(d) The set of bounded continuous functions is dense in 1 (R).
(e) Theset ([ 1,1]) isdensein ([ 1,1]).

(f) The space P(R) is separable for all » suchthat 1 » < 1.
(g) The space .Z¢N) is separable for all » such that1 » 1.

(h) The space ([ 1, 1]) is separable.






