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Spatiotemporal Pattern Formation in Neural
Fields with Linear Adaptation
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Abstract We study spatiotemporal patterns of activity that emerge in neural fields
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waves [27, 53], suggesting that some process other than inhibition must curtail
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system [26, 54]. This single stationary “bump” can be perturbed and pinned with
external stimuli as we see in subsequent sections of this chapter.

4.2.1.2 Imaginary Eigenvalues
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Fig. 4.2 Three different
cases of critical wavenumbers
in the square lattice. The
critical wavenumbers are
(from out to in),
f.˙1; 0/; .0; ˙1/g,
f.˙2; 1/; .˙2; !1/,.˙1; 2/; .˙1; !2/g
and
f.˙3; 4/; .˙3; !4/,.˙4; 3/; .˙4; !3/,
.˙5; 0/; .0; ˙5/g

see only stable traveling waves. Figure 4.1
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nonzero solutions, z1 D z2 D z3 D z4 D A00 which are stable if a > fdCc!b; dC
b!c; bCc!dg: We remark that the triplet solutions zj D zk D zl D A000 are never
stable and that if F 00.0/ D 0
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cycles along the principle directions. In the simulations illustrated in the figure,
we change uth
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4.3 Response to Inputs in the Ring Network
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Fig. 4.4 (a) Partition of (I0,˛!1) parameter space into different dynamical behaviors of the bump
solution (4.12) for Heaviside firing rate (4.8). Numerical simulation of the (
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a moving input is introduced, the system tends to lock to it if it has speed
commensurate with that of the natural wave. Converting to a wave coordinate frame
! D x ! c0t where we choose the stimulus speed c0, we can study traveling
wave solutions .u.x; t/; v.x; t// D .U.!/; V .!// of (4.1
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Fig. 4.5 Sloshing instability of stimulus-locked traveling bumps (4.33) in adaptive neural field
(4.1) with Heaviside firing rate (4.8). (a) Dependence of stimulus locked pulse width ! on stimulus
speed c0, calculated using the implicit equations (4.36) and (4.37). (a) Zeros of the Evans function
E ."/ D det.Ap ! I /, with (4.47), occur at the crossings of the zero contours of ReE ."/ (black)
and ImE ."/ (grey). Presented here for stimulus speed c0 D 0:042, just beyond the Hopf bifurcation
at cH " 0:046. Breathing instability occurs in numerical simulations for (b) c0 D 0:036 and (c)
c0 D 0:042. (d) When stimulus speed c0 D 0:047 is sufficiently fast, stable traveling bumps lock.
Other parameters are # D 0:5, ˛ D 0:05, ˇ D 0:2, and I
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function (4.8). In parameter regime we show, there are two pulses for each parameter
value, either both are unstable or one is stable. As the speed of stimuli is decreased,
a stable traveling bump undergoes a Hopf bifurcation. For sufficiently fast stimuli, a
stable traveling bump can lock to the stimulus, as shown in Fig. 4.5d. However, for
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dynamics of the adaptation variable v additionally governs the stability
of the stationary bump [22]. In particular, if ˛ < ˇ, stationary bumps
are always unstable. Stable bumps in the scalar model of Amari can
extend to this model only for ˛ > ˇ, and a stable bump for ˛ > ˇ
destabilizes as ˛ decreases through ˛ D ˇ leading to a drift instability
[22] that gives rise to traveling bumps.

CASE II: Localized Excitatory Input .I.x/ > 0/. A variety of bifurcation
scenarios can occur [22, 23], and, importantly, stationary bumps can
emerge in a saddle-node bifurcation for strong inputs in parameter
regimes where stationary bumps do not exist for weak or zero input as
shown in Fig. 4.6
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Fig. 4.7 Destabilization of spatial modes ˝C.x/ and ˝!.x/, as the bifurcation parameter Iı
is varied through a Hopf bifurcation, can give rise to a stable breather or slosher, respectively,
depending on the relative position of the bifurcation points for each spatial mode (e.g., H˚ and
H", Fig. 4.6c). (a) a plot of u.x; t/ exhibiting a breather arising from destabilization of the sum
mode ˝C.x/ for Iı D 1:9; Nwi D 0; ˇ D 2:75; ˛ D 0:1; ! D 0:375. (b) a plot of u.x; t/ exhibiting
a slosher arising from destabilization of the difference mode ˝!.x/ for Iı D 1:5; Nwi D 0:4; "i D
2; ˇ D 2:6; ˛ D 0:01; ! D 0:35. Common parameters: " D 1:2; Nwe D 1; "e D
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the two threshold crossings of the bump relative to the position of the input I.!/.
This results in consistency conditions for the existence of a stimulus-locked traveling
bump:

" D .1 ! #!/MC.!1/ ! .1 ! #C/M!.!1/;

" D .1 ! #!/MC.!2/ ! .1 ! #C/M!.!2/:
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Stability of Traveling Bumps. By setting u D Uc C Q' and v D Vc C Q , we study
the evolution of small perturbations . Q'; Q /T in the linearization of (4.1) about the
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