

Normative decision rules in changing environments

Nicholas W Barendregt^{1*}, Joshua I Gold², Krešimir Josi³, Zachary P Kilpatrick¹

¹Department of Applied Mathematics, University of Colorado Boulder, Boulder, United States; ²Department of Neuroscience, University of Pennsylvania, Philadelphia, United States; ³Department of Mathematics, University of Houston, Houston, United States

Abstract 🖏 🏚 👔 🦽 🦛 🦔 ma l<u></u>t a la_ a ma 🍋 🔎 l an 🐧 Ø 7.0 an, em c 1, en . . , ≛ mje Ita _scall_, ,● ♪ m l , n n m,o na al≛c, _namcc,on alc_n__man lanz ,e c≛,en≛,em ,entit nela.V <u>, 1</u> c≛,enme In c a 🄊 🖲 ma no ac m la,on ∎ a<u></u>ta_l ng nang 🔎 🖄 a,ec l a a ,● c a,●n n c 1 ,on 📬 la al., 2015), ac m la _namcc, en , en 1 n I_n 1 , ee . n (n a 🄊 ma me clent at enc an incent, c n alc an 🛓 n al 🤳 Ø c,• 1,• algi cl,•n.n lcall, ,• max (a a)lmam. n man, ctonmo t. Vto a to clen lel 1 ac 1 1 1 ŀ al t c c 1 o m ,● al m,● 上 a С ກ 🔎 ກ ลฑ ŀ С Ø C .• 🤊 àŋ, 🔎 m 🔎 🏄 🛴 nmlmn c L_(∞•¹ L). ♥ me 🖡 n ลฑ ааа m a clenme l a a <u>هر ا اهر ا ا</u> ,• m ,• c, na an , n 🗴 🔬 🚽 man 🌵 👧 🖞 🏓 nac 🇢 n 🐧 🔎 m ∮, na al ⊾ m - a 🔍 ท 1111 а. ln⊾nje ma ลก ก al c 🖢 🔊 - ma 🖉 🐧 al .an a 🔎 at ______namc, a a ,● 批上 a a an 🖞 c a , en , an 🐧 🔎 a en an cemm mn. 7 .

*For correspondence: nicholas.barendregt@colorado. edu

a 1.9

Competing interest: 19

Funding:

Preprinted: 2.9 | 2022 Received: 03₩ a 2022 Accepted: 20 c → 2022 Published: 25 c → 2022

Editor's evaluation

l a ma⊾lan m,e anc,en ł. c 🕹 🔊 - ma 🖉 🐧 ,en ,e ... ท m a 🎤 🧢 c 🎮 a clan a can g Lanon al Ø a ann n alt comt. ta ll ,● ,●a m n all 1 an - F , , n 11 ,● ⊾a, ,●n c ੈ,●n-ma⊾a, n m

Introduction

n≛m l c≛,en*can ∮ ,● a a ,● ac ang ng , I e, 🔎 n,on 🔎 al_k? ant can **,●**n[‡] ac,● | n , n , n a L. c an a 1,0 a, ¹ catann c a 🔎 🛛 🛓 aľ c a l 🖢 n 🛓), ea а ,∙l ¤ s , е а _● ¹ c __namc 🛓 n al ,● I , _,a ,• ľ ກ ກ 🗨 İc n me ŀ ŀ an ma⊾ 🖞 c 1,0n¹. ,0 ,• am I, man_c, emmenl, 1 h n ลฑ me c ໄຼຼຸອກເຼຼອmm m ກຼຸຼອເ 🎍 n ecmla 1 a all n , an, а m а **,**●n **▶**,• (, 45 al 🔎 , •,

Computational and Systems Biology | Neuroscience

$$y_n = \ln \frac{\Pr(s_+ |\xi_{1:n})}{\Pr(s_- |\xi_{1:n})} = \ln \frac{f_+(\xi_n)}{f_-(\xi_n)} + y_{n-1}.$$
(2)

 $V(p_n; \rho) = \max\{V_+(p_n; \rho), V_-(p_n; \rho), V_w(p_n; \rho)\}$

= max

mil a c ag b g abgi c benia ecemi bel namch a b mman mbet al belc ag zmet. b metec ente n at an n e mg emb mil meneercc ag b rcen a am b (n ban ag e bbi bel met, e ben n en mb bgi c ag b n at a am b. e a e ag at , b nb m n R_i = O an ab m a R_c ag b a l be a b namch a b g a b men

$$R_c(t) = (R_2 - R_1)H_{\theta}(t - 0.5) + R_1.$$
(5)

b, a t c t om e ang a R_1 , t e ang a R_2 a t = 0.5. • the second structure of the second struct

,•	e ang	at⊾,,● mal≛	ag 🗄 🔎 n 🔎	าก ∌_่ ก	nllca	∎ ่ก ช
al _a c	a e ,	! , •	_namc!aaa	🔎 🗄 c a	🌒 🕹 na 🛛	a 👌 m la 🔎 🏓
аа	🔎 ang 上	n a (). 🔎		ang 🔎 🏓 🗌
<u></u> ∮n	o• ¹, e	anc ent	ກ 🔎ກm ກ. [‡]	上 🛯 👌 👌	<u>l</u> n	no al 🔍
$m = \frac{2^2}{2} \Rightarrow $	a 🔊 💷 🏓	a a 📩	n _●n			

$$\mu(t) = (\mu_2 - \mu_1)H_{\theta}(t - 0.5) + \mu_1.$$
()

🔎 💵 🛔 e ang	al _k ,	an 🔎 n 🗄 m la	lal mela,	, 🖈 🦻	a e ang	
a'ı (). 🦽 🖉	,n İcal mene,	enccang İn	nc al_,al	al 🔎 c	
mene,enccang 🏌	n 上 , 🖻	a . 1.1	a, en ,el≛a,Ω	-41.??4 a.β	-41.223 -	. 5/

eLi

a 🛓 g m na 🖞 a 🚛 🎾 e maxin a 🖞 a c 🔎 l وار С 1 . n ή a 🔎 . ิก n 🗄 🔎 🧕 ⊥ ,●n ⊥) an ⊥m la nal I Ia (c al n 20 ŀ n 1 "et mee "e 1 **,**●n[†]) m• 1 ,• **. n 1** (С ,• - กลุ a an 🧃 🏓 ,●nal n●! ,● ¹ ゥ● al ŋ● ma m,● la ,≜‼aang ac 🎤 ฑ а $n a^{\dagger} = \frac{y^{+} mn}{+},$ ŀ в ≜, с ma m m 🎤 l а n•! $\overline{\sigma}_y$ an $\overline{\sigma}_{mn}$ a ŀ i i n' an me net nje ma nje lje **,●** m[‡] 3 nn n le-,-g alcl(4). lnllall cal, e acan, n\$\$42n(a)1?\$42n(a?[?c)1?\$4nn a@20 a. calak 2\$5093 n n 🔎 n

1 ,• n 18 ,• L nt nt	ac n ag	aກະ 🔍 🦽 m 🔍 ag 🤳 🕅	5 ,e a-c mac).
🔪 _ 200m [‡] , a 🔎	n m,● ,●m	cnag "en"eng	🔎 🗃 ag 🍐 🛛 al
jal_ je 🖞	a' k	c ng c an⊾ng ang ,ool	c, nanmo , k n 🔍
m all 1 ⊮ m ●	,em ເກ	. jc_¹c,●l ၨ',●n a an_, m	🔎 all 1 5 🔎 a
m. n. 🛓	jc ma	c en, mang ern el n latit c ,encante l	n <u></u> ≜ m,● m n. ^k .,●
nca c, c	al na 🎌	n lattc , encant, 1	ng ac,em na,e alang -
m א (🗤) a 🏌	a lul 🐢 🗴 🖛	

mel, _t tramelaam t, an tragt, e atantje atucen ent. Ingtcla njeerga e aam tragt en a trican melaam (tragt e an aml). Vicla a g tma al e a n tje atuma_atrictial g n a tme a eal e tritte tilte mantrictin tanaa , nema tag_nta e unte tctag tragt entremel tertagten tramele

Discussion

Computational an Systems Biology | Neuroscience

net_ne ma me l nen-mene, enc cten telt av noelle le titte a alet tan mant jottaa an et ne na ctentag tn la let mi oten nenn nt.

່ງໄປເລກa minalປາກ່ຽງລ່ຽ ກ່ອນ ໂຼງ ອຸກາດ ເປັງອກ-ma⊾ຫຼາ talat, menta ane ma a a tranalla et a' a amt,e la L‡m latut.,e am l, a cang atut c ,e ct. tro a almot, ic at a g n l a g at i () a i on g o a c at nit ac m la g i am g o i (). I g i i n to mo lg i li o nom m n al i g n c an l i n i an o i l a o i o c n C 🤊 lijcaa.c,en, ng,e ,e⊾anc,ent g lint ….e ,e max ,e ,e) || | ,• m,● k ,•c an at⊾aam I(•7 •7 g,ent,e at⊾a am ta meta met nal,em,et alti⊾t,ent manc, ec., an moon all, pour pour bar a pool at 🖞 👘 🜒 a al **a** m 🤊 an e elenen a l'energen a d'attric at et nel g a cag tin a e a con g a ti, tig no ma . e e min c l plaelall, na ,eatitn ,e n ,, m,an la,ent nat⊾_namctan ct,en lt.

Notes in the second of the

al^t c^tlul, ono lonatal^tag, n omaga^t no oal(an n'a Lonamona-noma , '-noma , an iciagi.n **)** 1 aa, mnal^{is}ta i^stan cla^twecyenⁱ cajala_ , ot in anal<u>t</u>™ of a analt Maria a seat ter a a a clatter molt (.,), tomollata call I en total mente totac m la ran mar ctent. cat l,⊕n n all a e clont a th o call in 111, a no ma anal t can o I a. In Iana Ito, Ilali n Jona a Ila aom can a li ananye ma an t`c mye t`.,e am I, anye ma anal<u>t</u>tije ,e mana ,en a _namc a at , c t t, el _namcttmla, e , n a l a t, e l ກ l a c ໍt ເ,∞nt an ໍt,,el (e g ກ _tg nal)m,e l.€em ກ g ໋ m,e l-at n beja,ent me l- a ,ea b,bc at a -b,e ,en ,e....()canabea n n sacommonal in comax an becia, nan comb m,e blabb ,e n ,e je m n⁵. mə در امرا ne, tanı a مرمور a la مرمور a la مرمور a məlc

$$V(p_{n}; \rho) = \max\{V_{+}(p_{n}; \rho), V_{-}(p_{n}; \rho), V_{w}(p_{n}; \rho)\}\$$

= $\max\begin{cases}R_{c}p_{n} + R_{i}(1 - p_{n}) - t_{i} \ \rho, \\R\end{cases}$ choose s_{+}

SNR-change task thresholds

• e ang at ν , alle at ν c $|_m = \frac{2}{2}$, a a at a at a all $ma\nu$ $ma\nu$ $\mu(t)$ a m - n n t m on n

$$\mu(t) = (\mu_2 - \mu_1)H_{\theta}(t - 0.5) + \mu_1.$$

JF elak Achange Shis'y cfT T for causely changes.

eLi

Author contributions cold Y ang, Concalana, Ang, Concalana, Yalaon, Vialaon, Wale of a Sol, Kam, Jana, Yalan, Ang, Ang, Ang, Ang, Ang, Ang, Ang, An
Za a $(K a c v)$, $h = h$,
Decision letter and Author response c 1 ml https://doi.org 0.7554/eLife.79824.sa1 f 1 https://doi.org/10.7554/eLife.79824.sa2
Additional files Supplementary files
Data availability Na c,● ♪ ,● n a all ♪ ♪an ● ♪♪a a la l a ♪/ág c,●m/n a n ● / a ,● m ♪,⊄,● _ac a ♪ 1 2? ?a3 9≸a3 9??9a00?4a?9 3414 9 4a2).
References Ashwood ZC, A, , An , a , c lan K, 1969 , 14 la, W 4.1 (, Win no \$a (\$2 a.b), 33 3/2 0 (

