Department of Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION August 2018

Instru	ictions:
--------	----------

Prob
1
2.
3.
Stat
4
5.
6.
Total

Probability Section

1. Probability: Problem 1

Let $c \in R$ be a constant, and consider a random vector (X,Y) taking values in R^2 with probability density function:

$$f(x,y) = \frac{1}{2} \exp \frac{2cxy}{2} \frac{(1+c^2)x^2}{2}$$
.

(a) Determine the distribution of X.

- (a) Use (1) and $e^{x} = \prod_{n=0}^{\infty} x^{n}/n!$ to show that $P(A) = 1 + q_{ii} + \frac{1}{2}q_{ii}^{2} + o(^{2})$. From this, prove that $E_{0} f(X_{t}) dt = A P(A) = f(i) + q_{ii} f(i)^{2} + o(^{2})$.
- (b) Find the conditional density function of given that . (Hint: You may rst derive the conditional distribution of given that).
- (c) Let $:=\inf\{t : X_t = X_t\}$, the second time X changes its state. Since B = { < }, the quantity E $_0$ f(X_t)dt