APPM 3570/STAT 3100

NAME: _____

SECTION: 001 002

Instructions:

- 1. Calculators are permitted.
- 2. Notes, your text and other books, cell phones, and other electronic devices are not permitted | except for calculators or as needed to view and upload your work.
- 3. Justify your answers, show all work.
- 4. When you have completed the exam, go to the uploading area in the room and scan your exam and upload it to Gradescope.
- 5. Don't forget to scan any back pages you used for extra space!
- 6. Verify that everything has been uploaded correctly and the pages have been associated to the correct problems.
- 7. Turn in your hardcopy exam.

On my honor as a University of Colorado Boulder student, I have neither given nor received unauthorized assistance on this work.

Signature:

Date:

Duration: 90 minutes

Problem 1. (24 points.) There are three unrelated parts to this question.

- (a) Let X be a random variable such that P(X = 1) = 1 P(X = 0) > 0. If 5 Var(X) = E(X), nd P(X = 0).
- (b) Let U and V be discrete random variables with joint probability mass function (p.m.f.) given by the following table. What's the probability that $V = U^2$?

	<i>V</i> = 1	V = 0	V = 1		
<i>U</i> = 1	5/38	1/19	3/19		
U = 0	1/38	3/19	1/19		
<i>U</i> = 1	7/38	4/19	1/38		

Problem 2. (24 points.) There are three unrelated parts to this question.

(a) Let X be a random variable with cumulative distribution function (c.d.f.):

$$F(x) = \begin{pmatrix} 0 & ; x < \ln(3); \\ \frac{3e^{x}}{3(e^{x}+1)} & ; x & \ln(3): \end{pmatrix}$$

Is X discrete, continuous, or neither? If discrete, determine its p.m.f. If continuous, determine its probability density function (p.d.f.).

- (b) The life *L*, in years, of a certain type of electrical switch has an exponential distribution with an average life of 2 years. What is the probability it fails during the rst year?
- (c) Let Y Normal(16;16). Find the expected value of $\frac{Y^2}{4}$.

Solution:

(a) (8 points.) Clearly, F(x) is continuous for $x < \ln(3)$ and $x > \ln(3)$. On the other hand, since $3e^x = 1$ when $x = \ln(3)$, we determine that

F
$$\ln(3) = \frac{1}{3(1=3+1)} = 0 = \lim_{x \neq 1} \lim_{\ln(3)} F(x)$$

thus F is continuous everywhere, and X is a continuous random variable. Further, for $x > \ln(3)$:

$$f(x) = \frac{d}{dx} \frac{3e^{x}}{3(e^{x}+1)} = \frac{3e^{x}(e^{x}+1)}{3(e^{x}+1)^{2}} = \frac{4e^{x}}{3(e^{x}+1)^{2}}$$

(b) (8 points.) Since L Exponential(= 1=2):

$$P(L < 1) = \int_{0}^{L} \frac{1}{2} e^{-\frac{x}{2}} dx = e^{-\frac{x}{2}} \int_{0}^{1} = 1 e^{-\frac{1}{2}} (-0.393):$$

(c) (8 points.) Recall that $V(Y) = E(Y^2)$ $(EY)^2$. So:

$$E \quad \frac{Y^2 \quad 16}{4} = \frac{E(Y^2) \quad 16}{4} = \frac{V(Y) + (EY)^2 \quad 16}{4} = \frac{16 + 16^2 \quad 16}{4} = \frac{16^2}{4} = 4 \quad 16 = 64$$

(Use the back page if additional space is needed!)

Problem 3. (24 points.) Each of two coins, one with $P(\Heads'') = 0.6$ and the other with $P(\Heads'') = 0.002$ is tossed 500 times. Assume the result of any coin ip to be independent of any other coin ip. Let X_1 be the number of times the rst coin shows heads. Let X_2 be the number of times the second coin shows heads.

- (a) What's the distribution of X_1 ? What about X_2 ? (Give a common distribution name and its parameters, or write the p.m.f.)
- (b) What's the expected value of X_1 ? What about X_2 ?
- (c) What's the variance of X_1 ? What about X_2 ?
- (d) Use appropriately the Poisson or Normal approximation to estimate $P(X_1 \quad 325; X_2 = 4)$ numerically. You may not the table at the end of the exam useful.

Solution:

- (a) (6 points.) X_1 Binomial (n = 500; p = 0.6), and X_2 Binomial (n = 500; p = 0.002).
- (b) (4 points.) $E(X_1) = 500$ 0.6 = 300, and $E(X_2) = 500$ 0.002 = 1.
- (c) (4 points.) $V(X_1) = 500$ 0.6 0.4 = 120, and $V(X_2) = 300$ 0.002 0.998 = 0.998.
- (d) (10 points.)

Solution I.

$$P(X_{1} \quad 325; X_{2} = 4) = P(X_{1} \quad 325) \quad P(X_{2} = 4)$$

$$= P \quad \frac{X_{1}}{P} \frac{300}{120} \quad \frac{325}{P} \frac{300}{120} \quad P(X_{2} = 4)$$

$$\frac{25}{P} \frac{1^{4} \ e^{-1}}{4!}$$

$$\frac{(2:28)}{e \ 4!}$$

$$\frac{0.9887}{e \ 4!}$$

$$0.015:$$

Solution II.

$$P(X_{1} \quad 325.5; X_{2} = 4) = P(X_{1} \quad 325.5) \quad P(X_{2} = 4)$$

$$= P \quad \frac{X_{1}}{P} \frac{300}{\overline{120}} \quad \frac{325.5}{P} \frac{300}{\overline{120}} \quad P(X_{2} = 4)$$

$$= \frac{25.5}{P} \frac{1^{4} e^{-1}}{\overline{120}} \quad \frac{1^{4} e^{-1}}{4!}$$

$$= \frac{(2.32)}{e^{-4!}}$$

$$= \frac{0.9898}{e^{-4!}}$$

$$= 0.015$$

4)

(Use the back page if additional space is needed!)

Problem 4. (28 points.) Let X and Y be a random variables with joint p.d.f.:

 $f_{X;Y}(x;y) = \begin{pmatrix} c & (2x+y) & ; 0 < x < y < 1; \\ 0 & ; otherwise; \end{pmatrix}$

for a suitable constant *c*.

- (a) Find the constant *c*.
- (b) Find the marginal p.d.f. of X.
- (c) Find E[*Y*]:
- (d) Are X and Y independent? Justify your answer.

Solution:

(a) (7 points.) c must be so that

$$1 = \begin{cases} Z_{1} Z_{y} \\ c(2x + y) dx dy \\ e^{2} I_{1}^{0} \\ c x^{2} + xy \\ x=0 \end{cases}$$
$$= c \qquad 2y^{2} dy \\ = c \qquad 2y^{2} dy \\ = c \qquad \frac{2y^{3} y=1}{3 y=0} \\ = \frac{2c}{3}:$$

Hence, c = 3=2

(b) (7 points.)

$$f_X(x) = \frac{\sum_{x=1}^{2} \frac{3}{2} (2x + y) \, dy; \quad \text{for } 0 < x < 1$$
$$= \frac{\sum_{x=1}^{2} 3x + \frac{3y}{2} \, dy$$
$$= 3xy + \frac{3y^2}{4} \frac{y = 1}{y = x}$$
$$= 3x + \frac{3}{4} \frac{3x^2 + \frac{3x^2}{4}}{y = x}$$
$$= 3x + \frac{3}{4} \frac{15x^2}{4}$$

Summarizing:

$$f_X(x) = \frac{\left(\frac{15x^2}{4} + 3x + \frac{3}{4}\right)}{0} \quad 0 < x < 1;$$

otherwise:

So: Z = E[Y] =

Bonus Problem. (Recover up to 4 points marked down in problems 1-4.) Let X and Y be independent random variables, each uniformly distributed on the interval (0:1). Find the probability that jX = Yj = 0.25.

Solution:

Solution I. Since (X; Y) is uniformly distributed on the square in the *xy*-plane with coordinates (0;0), (1;0), (1;1), (0;1), which has area 1, the probability that (X; Y) belongs to a region in the square is given by its area. Using this geometric argument:

$$P(JX \quad YJ \quad 0.25) = 1 \quad P(JX \quad YJ > 0.25)$$
$$= 1 \quad \frac{3}{4} \quad \frac{3}{4} \quad \frac{1}{2} \quad 2$$
$$= 1 \quad \frac{9}{16} = \frac{7}{16}:$$

Solution II.

$$P(jX \quad Yj \quad :25) = 1 \quad P(jX \quad Yj > 0:25) = 1 \quad 2 P(Y \quad X > 0:25) = 1 \quad 2 P(Y \quad X > 0:25) = 1 \quad 2 \quad .75 \quad Z \quad .75 \quad Z \quad .75 = 1 \quad 2 \quad .75 \quad x \, dx = 1 \quad 2 \quad .75 \quad x \, dx = 1 \quad 2 \quad .3x \quad \frac{x^2}{4} \quad \frac{x^2}{2} \quad .75 = 1 \quad 2 \quad .3x \quad \frac{x^2}{4} \quad \frac{x^2}{2} \quad .75 = 1 \quad 2 \quad .3x \quad \frac{x^2}{4} \quad \frac{x^2}{2} \quad .75 = 1 \quad 2 \quad .3x \quad \frac{x^2}{4} \quad \frac{x^2}{2} \quad \frac{x^2}{4} = 1 \quad .3x \quad \frac{x^2}{4} \quad \frac$$

Solution III.

$$P(jX \quad Yj \quad :25) = \begin{bmatrix} Z & :25 & Z & :x+25 & Z & :75 & Z & :x+25 & Z & 1 & Z & 1 \\ 0 & 0 & :25 & x & :25 & 1 & dy \, dx + \\ & :25 & x & :25 & Z & 1 & 1 & dy \, dx \\ & = \begin{bmatrix} Z^2 & :25 & x + \frac{1}{4} \, dx + \\ 0 & :25 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 1 & 25 & Z & 1 \\ & :25 & 2 & 1 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 1 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 2 & 1 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 2 & 1 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 2 & 1 & 25 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 2 & 1 & 25 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 2 & 1 & 25 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 2 & 1 & 25 & 25 & Z & 1 & Z & 1 \\ & :25 & 2 & 2 & 2 & 1 & 25 & Z & 1 \\ & :25 & 2 & 2 & 2 & 1 & 25 & Z & 1 \\ & :25 & 2 & 2 & 1 & 2 & 1 & 2 & 1 \\ & :25 & 2 & 2 & 1 & 2 & 1 & 2 & 1 \\ & :25 & 2 & 2 & 1 & 2 & 1 & 2 & 1 \\ & :25 & 2 & 2 & 1 & 2 & 1 & 2 & 1 \\ & :25 & 2 & 2 & 1 & 1 \\ & :25 & 2 & 2 & 1 & 2 & 1 \\ & :25 & 2 & 2 & 1 & 1 \\ & :25 & 2 & 2 & 1 & 1 \\ & :25 & 2 & 2 & 1 & 2 \\ & :25 & 2 & 2 & 1 & 2 \\ & :25 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 2 & 1 \\ & :25 & 2 & 2 & 2 & 2 \\ & :25 & 2 & 2 & 2 & 2 \\ & :25 & 2 & 2 & 2 & 2 \\ & :25 & 2 & 2 & 2 & 2 \\ & :25 & 2 & 2 & 2 & 2 \\ & :25 & 2 & 2 & 2 & 2 \\ & :25 & 2 & 2 & 2 & 2 \\ &$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998