Write your name below. This exam is worth 100 points. On each problem (except for problem 1),

2. (19 points) Consider the following matrix A

$$A = \begin{cases} 2 & 0 & 3 & 0 & 2^{3} \\ 6 & 1 & 2 & -3 & 07 \\ 4 & 2 & 5 & -4 & 35 \\ -3 & -4 & 7 & 0 \end{cases}$$

- (a) (7 points) Find the permutation matrix P such that B := PA is symmetric. Show both P and B.
- (b) (12 points) Can B be factored as LDL^T? If yes, nd the factorization. If no, justify why it cannot be factored.

Solutions:

(a) Note that the last three rows already look symmetric. Then we have

	2			3	2			3
P =	20	1	0	0	2 1	2	-3	0
	ģo	0	1	07	<mark>р 8</mark> 2	5	5 -4	
	4 ₀	0	0	15	$B = 4_{-3}$	-4	7	02.
	1	0	0	0	0	3	0	2

(b) Note that since B is symmetric, it could be possible. According to the theorem, we need to know if B is regular. We attempt to perform LU factorization, rst:

:

3. (20 points: 10 each)

The following two problems are unrelated.

(a) Determine if the following matrices are linearly independent

(b) Let $V = R^4$ and W = V be the space spanned by the vectors:

	0	1	1	0	2	1	0	3	1
the vectors:	DDD@	-2 5	Ê		2 3 1	Ê	BBB@	8 -3	С: А:
		-3			-4			-5	

and the dimension of W is two.

(Solution 2) Another solution (albeit slightly harder) is to consider the matrix whose columns are the vectors and nd it REF:

$$A = \begin{bmatrix} O & & & & 1 & O & & & 1 & 2 & 3 & 1 & O & & & 1 & 2 & 3 & 1 & 0 & & & 1 & 2 & 3 & 1 & 0 & & & 1 & 2 & 3 & 1 & & \\ B & -2 & 3 & 8 & C & -1 & B & 0 & 7 & 14 & C & & & B & 0 & 7 & 14 & C & & \\ 5 & 1 & -3 & A & -1 & B & 0 & -9 & -18 & A & -1 & B & 0 & 0 & 0 & A & & \\ -3 & -4 & -5 & & 0 & 2 & 4 & & 0 & 0 & 0 & 0 & & \\ \end{bmatrix}$$

Here we are looking for the column space so we see that columns one and two are pivot columns and so select the pivot columns from the original matrix A:

basis for W = $(1; -2; 5; -3)^T; (2; 3; 1; -4)^T$

4. (19 points)

The following two questions are unrelated.

- (a) (9 points) Let $V = R^3$ and $W = (x; y; z)^T 2 V : x^2 2xy + y^2 z^2 = 0$. Is W a vector subspace of V? Prove or disprove.
- (b) (10 points) Consider F (I), the vector space of real valued functions on an interval I. Do the solutions to the di erential equation

$$y^{00} + 5y^0 + 2y = 0$$

form a subspace of F(I)? Prove that they do or show that they do not.

Solution:

(a) W is not a vector space as it is not closed under vector addition:

$$\begin{array}{c} O & 1 & O & 1 \\ Let w_1 &= \overset{O}{=} \begin{array}{c} 1 & A \\ 2 & A \\ 1 & & -1 \end{array} \begin{array}{c} O & 1 \\ A \\ -1 \end{array} \begin{array}{c} A \\ be members of W, then \\ -1 \end{array}$$

(b) This is a subspace. It is non-empty (y = 0 is a solution) and closed under both scalar multiplication and vector addition:

For any c 2 R we have $(cy)^{00} + 5(cy)^{0} + 2(cy) = c(y)^{00} + 5c(y)^{0} + 2cy$ $= c(y^{00} + 5y^{0} + 2y) = c(0) = 0.$

For any 2 solutions to the di erential equation we have $(y_1 + y_2)^{00} + 5(y_1 + y_2)^0 + 2(y_1 + y_2) = y_1^{00} + y_2^{00} + 5y_1^0 + 5y_2^0 + 2y_1 + 2y_2$

$$= (y_1^{00} + 5y_1^{0} + 2y_1) + (y_2^{00} + 5y_2^{0} + 2y_2) = 0$$

5.