


Check that the functions are linearly independent
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so the two functions are linearly independent.
�
x�3; x

	
is a basis for the solution space.

(c) We need to use variation of parameters so start by putting the differential equation into standard form
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We’ll let y1 = x�3 and y2 = x, f(x) = x�3 from the differential equation and W [y1; y2] = 4x�3 from part (b). The particular
solution will have the form yp = v1y1 + v2y2 where
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(d) (3 pts) If � = 3 and the mass of the object is 4, what is the value of the spring/restoring constant if the oscillator is critically
damped?

SOLUTION:

(a) x(0) = �1; _x(0) = 0

(b) � = 0; !0 > 0; F0 6= 0; � = !0

(c) i. yes
ii. infinitely many

iii. yes

(d) Critically damped means 4�2 � 4!2
0 = 0 =) 9� k

4 = 0 =) k = 36

�

5. [2360/041322 (12 pts)] Characteristic equations for certain constant coefficient linear homogeneous differential equations are given along
with a forcing function, f(t). Give the form of the particular solution you would use to solve the nonhomogeneous [with the given
f(t)] differential equation from which the characteristic equation was derived using the Method of Undetermined Coefficients. Do
not solve for the coefficients.

(a) (4 pts) r(3r � 1) = 0; f(t) = �3 + sin t

(b) (4 pts) r2 + 2r + 5 = [r � (�1 + 2i)][r � (�1� 2i)]) = 0; f(t) = e�t + 5 cos 2t

(c) (4 pts) (r � 3)3(r + 2) = 0; f(t) = te3t + 2e�2t

SOLUTION:

(a) Homogeneous solutions are 1; et/3; yp = At+B cos t+ C sin t

(b) Homogeneous solutions are e�t cos 2t; e�t sin 2t; yp = Ae�t +B cos 2t+ C sin 2t

(c) Homogeneous solutions are e3t; te3t; t2e3t; e�2t; yp = t3(At+B)e3t + Cte�2t
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