1. [2360/030922 (10 pts)] Given the matrices

write the word TRUE or FALSE as appropriate. No work need be shown, no work will be graded and no partial credit will be given.

2 3 (a)
$$CB = {}^4$$
 55 (b) $Tr B^TA^T = 2$ (c) $A^TA = AA^T$ (d) jC^TC $3Ij = 10$ (e) $AB A^TB^T$ is not defined 11

SOLUTION:

(a) FALSE CB = 1 4
$${2 \atop 0}$$
 1 ${3 \atop 2}$ = 2 5 11 ${0 \atop 0}$ 2 ${1 \atop 0}$ 3 1 2 3 3 4 5 1 4 2 6 2 (b) TRUE Tr B^TA^T = Tr @4 1 15 1 3 1 A = Tr 4 1 1 15 = 2 + 1 1 = 2 3 2 1 3 1 1

(c) FALSE
$$A^TA$$
 is $(2 \ 3)(3 \ 2) = 2 \ 2$ whereas AA^T is $(3 \ 2)(2 \ 3) = 3 \ 3$ so they cannot be equal

(d) FALSE
$$jC^{T}C$$
 $3Ij = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ 1 4 3 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 4 & 16 \end{pmatrix}$ AA

We need to $\,$ nd constants $c_1;\,c_2;\,c_3$ such that $c_1^{\,\,\#}$

5. [2360/030922 (12 pts)] Determine if each of the following sets of vectors forms a basis for \mathbb{R}^3 . Justify your answers.

SOLUTION:

Note that the dimension of R³ is 3 so a basis consists of 3 linearly independent vectors.

- (a) The set contains only 2 vectors and thus cannot form a basis for R³ regardless of the linear dependence or independence of the vectors in the set.
- (b) Three vectors in R³ can potentially be a basis if they are linearly independent. To check for this, we need to see if the only solution to 2 3 2 3 2 3 2 3 2 3 2 3 2 3

is the trivial solution. The determinant of the coef cient matrix is

implying that the system has nontrivial solutions, further implying that the vectors are linearly dependent and thus cannot form a basis for R³.

6. [2360/030922 (24 pts)] The following parts are unrelated.

(a) (12 pts) Find the RREF of A =
$$\frac{41}{3}$$
 1 1 1 15 3 15

(b) (12 pts) We need to solve the system A	$A \overset{\#}{x} = \overset{\#}{b}$. After a numb	er of elementary row operation	ns, the augmented matrix for the
system is	2	2	

$$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 3 & 5 & 3 \\ 6 & 0 & 1 & 3 & 0 & 2 & 4 & 7 \\ 4 & 0 & 0 & 0 & 1 & 2 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- i. (10 pts) Use this and the Nonhomogeneous Principle to nd the solution to the original system.
- ii. (2 pts) Find the dimension of the solution space of the original associated homogeneous system, $A^{\#} = {}^{\#}$. Hint: You have the information you need from part (i); very little additional work is required.

SOLUTION:

(b) i. Pivot columns correspond to $x_1; x_2; x_4$ so these are basic variables with x_3 and x_5 , corresponding to the nonpivot columns, being free variables. Setting $x_3 = s$ and $x_5 = t$, solutions have the form

pendent vectors so its dimension is 2.

7. [2360/030922 (14 pts)] Determine if the subsets, W, are subspaces of the given vector spaces, V.

(a)
$$(7 \text{ pts}) \text{ V} = \text{M}_{22}; \text{ W} = \begin{bmatrix} n & 0 & 0 \\ A \text{ 2 M}_{22}; \text{ A}^{\text{T}} = A \end{bmatrix}$$
, the set of all matrices of the form $\begin{bmatrix} 8 & 2 & 3 \\ k & 0 \end{bmatrix}$ where k is a real number. (b) $(7 \text{ pts}) \text{ V} = \text{R}^3; \text{ W} = \begin{bmatrix} \frac{1}{2} & \frac$

SOLUTION:

The set is closed under linear combinations and thus is a subspace.

Alternatively, let A; B 2 W and ; 2 R. Let C = A + B: Then
$$C^{T} = (A + B)^{T} = A^{T} + B^{T} = A B = (A + B) = C:$$

Therefore C 2 W, so by the Vector Subspace Theorem, W is a subspace of V.