APPM 2350—Exam 1

Friday, June 10th 1-2:35pm 2022

This exam has 4 problems. Show all your work and simplify your answers. Answers with no justification will receive no points. You are allowed one 8.5×11-in page of notes (ONE side). You may NOT use a calculator, smartphone, smartwatch, the Internet or any other electronic device.

Question 1 (20 pts)

The following parts are not related:

(a) The vectors \mathbf{A} and \mathbf{B} , shown below, are parallel to the xy-plane:

2D view

3D view of the same vectors

On your own sheet of paper, sketch and clearly label diagrams for the following (do not draw on this exam sheet). Clearly label each vector and each axis.

- (i) **A**; **B**; and **B A**
- (ii) $A : B : \text{ and } \text{proj}_{B} A$.
- (iii) A; B; and A B
- (b) Find one possible force yector F that satisfies both of the following criteria:

The work done by $\stackrel{7}{F}$ in moving an object from the point (2; 2;4) to the point (2;5;6) is 12 N-m (where distances are measured in meters and force is measured in Newtons)

F is not parallel to the object's displacement

Question 2 (32 pts)

A: 10.90I[(A 10.98q6ia:)]TJ706 Td [(On)-245(neters)-250(andG [(F56 10.9091 Tf -10.436 -.9050 g 0 G/F56 1rrTf 0.993 -7.485

Question 3 (25 pts)

Consider a particle moving along a path r(t) with a **constant speed** of 3 along the entire path. We also know that at the particular time t = 5 the following is true:

$$r'(5) = 3\hat{j}$$
 $2\hat{k}$ $\hat{T}(5) = \frac{\hat{i} + 2\hat{k}}{P_{\overline{5}}}$ $\hat{N}(5) = \hat{j}$ $(5) = 2$

For each of the following quantities, determine if you have enough information to calculate the exact quantity. If so, calculate it and justify your answer. If not, explain what additional information you'd need to calculate the exact quantity.

- (a) **Å**(5)
- (b) $\hat{\bf B}(0)$
- (c) v(5)
- (d) a (5)
- (e) \sqrt{a} at the time t=10

Question 4 (23 pts)

As part of an engineering project, you are trying to weld two steel objects together. The surfaces of the two objects are given by

$$\frac{(x-1)^2}{50} + \frac{y^2}{100} = 1$$
 and $z = \frac{x^2}{2} + \frac{y^2}{4}$

where distances are measured in feet. The objects are joined where these surfaces intersect. You know that to weld the objects together, you will need 0:05 pounds of welding wire per foot of weld.

- (a) Classify (i.e. give the name of) both of the surfaces.
- (b) Give a parameterization that traces out the curve of intersection of the surfaces. Give a parametric interval such that this curve is traced once.
- (c) If you have 3 lbs of welding wire available, will you be able to complete the weld? Show work fully justifying your answer.

End Of Exam