- i. [8 pts] Are there any points in the plate that are locally thicker or thinner than their nearby surroundings? If so, where are they? If not, explain why not.
- ii. [5 pts] Is there a thinnest part of the plate? Do not -nd it, simply answer YES or NO and give a brief explanation justifying your answer.

SOLUTION:

(a) We need the gradient of the magnetic eld.

r B =
$$
\frac{1}{xyz}(yz)
$$
; $\frac{1}{xyz}(xz)$; $\frac{1}{xyz}(xy) = \frac{1}{x}$; $\frac{1}{y}$; $\frac{1}{z}$

The maximum rate of change of the magnetic eld occurs in the direction of the gradient so the ship should be aimed in the direction

r B(1; 1; 2) = 1; 1;
$$
\frac{1}{2}
$$
 = i + j + $\frac{1}{2}$ k

and the maximum rate of change of the magnetic eld will be given by

$$
k r B(1; 1; 2)k = \frac{12 + 12 + \frac{1}{2}}{1^2 + 1^2 + \frac{1}{2}} = \frac{3}{2}
$$

(b) i. We need to nd and classify the critical points.

$$
h_x = 2xe^y = 0 = 0 x = 0
$$

$$
h_y = e^y \quad 2y + y^2 \quad x^2 = 0 =) \quad 2y + y^2 = 0 \quad \text{(since } x = 0) = \text{)} \quad y = 0; \quad 2
$$

Critical points are (0; 0);(0; 2). Now apply the Second Derivatives Test.

D (0; 0) = h_{xx} (0; 0)h_{yy} (0; 0)
$$
[h_{xy}(0; 0)]^2 = (2)(2)
$$
 0² = 4 < 0 =) (0; 0) is a saddle point
D (0; 2) = h_{xx} (0; 2)h_{yy} (0; 2) $[h_{xy}(0; 2)]^2 = 2e^{2}$ 2e² 0² = 4e⁴ > 0
and h_{xx} (0; 2) = 2e² < 0 =) h(0; 2) is a local maximum

The thickness is a local maximum at (0; 2) so there is a point that is locally thicker than its nearby surroundings. There are no points in the plate that are locally thinner than their surroundings.

- ii. YES. The thickness is a continuous function and the plate is a closed, bounded region so the Extreme Value Theorem applies. Since the interior critical points are a saddle and a local maximum, the thinnest part of the plate will be on the boundary.
- 3. [2350/031523 (25 pts)] Let $g(x; y) = cos(xy) +$

$$
dg = \frac{\textcircled{g}}{\textcircled{g}} dx + \frac{\textcircled{g}}{\textcircled{g}} dy = y \sin(xy) + y^2 dx + [x \sin(xy) + 2xy] dy
$$

At $(1; 1)$ we have $dg = 1 dx + 2 dy$ so that g is more sensitive to small changes in y.

(c) You arrive at the point $\frac{1}{2}$; 1 when t = 4 and the rate of change of temperature with respect to time is given by

$$
\frac{dg}{dt} = r g r^{0}(t) = h y \sin(xy) + y^{2}; x \sin(xy) + 2xyi \frac{1}{2}t^{3=2}; \frac{t}{8}
$$

\n
$$
= \frac{dg}{dt} = h (1) \sin(-2) + 1^{2}; (1=2) \sin(-2) + 2(1=2)(1)i \frac{1}{2}4^{3=2}; \frac{4}{8}
$$

\n
$$
= \frac{D}{1}; 1 \frac{E}{2} = \frac{1}{16}; \frac{1}{2} = \frac{1}{16} + \frac{8}{16} + \frac{4}{16} = \frac{1}{16}(7 \ 3)
$$

Since this is negative, the temperature is decreasing at a rate of $\frac{1}{16}(7 \ 3)$

4. [2350/031523 (16 pts)] A skateboard park has a new track in the form of the hyperbola $\frac{1}{4}x^2$ $y^2 = 12$. You are standing at the point $(x; y) = (0; 10)$

SOLUTION:

 (a)

f 1;
$$
\frac{1}{2} = 1
$$

\nf_x(x; y) = 2xe (x^2+2y) = 1) f_x 1; $\frac{1}{2} = 2$
\nf_{xx}(x; y) = 2e (x^2+2y) 2x² + 1 = 1) f_{xx} 1; $\frac{1}{2} = 2$
\nf_{xy}(x; y) = 4 xe (x^2+2y) = 1) f_{xy} 1; 1