5.

Answer the following problems and simplify your answers.

- 1. (22 pts) Let \mathcal{R} be the region bounded by the curves $y = x^2 2x$ and y = 2x.
 - (a) Sketch and shade the region \mathcal{R} , labeling the axes, intersection points, and curves.
 - (b) Set up, **but do not evaluate**, an integral with respect to x to find the volume of the solid generated when \mathcal{R} is revolved about the line x = -1.
 - (c) Set up, but do not evaluate, an integral with respect to x to find the volume of the solid generated when \mathcal{R} is revolved about the line y = 8.
- 2. (18 pts) Consider the curve $y = \ln(\cos(x))$ on the interval $0 \le x \le /4$.
 - (a) Set up, **but do not evaluate**, an integral to find the arc length of this curve. **Fully simplify** d*s*.
 - (b) The curve is rotated about the *x*-axis to generate a surface. Set up, **but do not evaluate**, an integral to find the surface area.
- 3. (24 pts) Assuming a uniform density , find the centroid of the region under the curve y = cos(x) and above the *x*-axis with $0 \le x \le \frac{1}{2}$.
- 4. (12 pts) A 10 m long chain with a mass of 50 kg hangs vertically from a crane. How much work is required to lift the entire chain to the top? (Use 10 m/s² as the acceleration due to gravity).