
- 5. (20 pts) Let $g(x) = \arctan x^2$.
 - (a) Find a Maclaurin series for g(x).
 - (b) Use your answer for part (a) to find a Maclaurin series for $x^3g(x)$. Simplify your answer.
 - (c) What is the sum of the series found in part (b)?
- 6. (14 pts) Consider the parametric curve $x = e^{t/2}$, $y = 1 + e^{2t}$.
 - (a) Find an equation of the line with slope 4 that is tangent to the curve.
 - (b) Eliminate the parameter to find a Cartesian equation of the curve. Simplify your answer.
- 7. (14 pts) Consider the curve $x^2 = 16(1 + y^2)$.
 - (a) Find the vertices and asymptotes of the curve.
 - (b) Find a polar representation r = f() for the curve.
- 8. (20 pts) Consider the polar curves $r = 2 + \sin(2)$ and $r = 2 + \cos(2)$ in the 1st and 2nd quadrants, shown at right.
 - (a) Find the (x, y) coordinates for the point that corresponds to $r = 2 + \sin(2)$, $= \frac{1}{6}$. Simplify your answer.
 - (b) Set up (but <u>do not evaluate</u>) integrals to find the following quantities.
 - i. Length of the curve $r = 2 + \sin(2)$.
 - ii. Area of the region inside $r = 2 + \sin(2)$ and outside $r = 2 + \cos(2)$. *Hint:* For the bounds, consider $\tan(2)$.

