APPM 1350 Exam 1 Spring 2024

1. (24 points) The following problems are not related. If a limit does not exist, you must say so. If you use a theorem,
clearly state its name and show that its hypotheses are satisfied.
(Reminder: You may not use L’Hépital’s Rule or ““Dominance of Powers” in any solutions on this exam.)

(@ lim Sec X
x¥10 4xcot2x
2
. sin“Xx
(b) lim
x1 1 X

© lim — 1
x¥l 2 5 x2

Solution:

(@)

sec X . 1=cos x

Iim ——— = lim ————-—
| ] C0S 2X
x¥04xcot2X x¥04x o X

. sin 2x

lim ———

x 10 4X COS X COS 2X
2sinx

(b) Note that
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By the Squeeze Theorem, we conclude that
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2. (21 points) The following problems are unrelated.

(@) Giventhatcsc = pg and =2 < < ,findthe values of tan and cos(2 ).
(b) Find all values of x in the interval [0; ] that satisfy tan x sec X = 4sin x.

(c) A squirrel is up a tree, and it sees a peanut on the ground some distance away. If the straight-line distance
between the peanut and the squirrel is 50 ft, and the angle between the straight-line and the tree is =6 radians,
how far down the tree and across the ground must the squirrel travel to reach the peanut? Give your answer
with appropriate units.

Solution:
(a) Sincecsc = pE, we know thatsin = F% Thus, the angle is opposite a side of length 1 in a right triangle

with hypotenuse pg. The adjacent sideto has length (" 5)2 12 = 2. Hence, tan =
Using a double-angle identity for cosine, we know that
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(b) Note that
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(a) Find a formula for f(x).
(b) Sketchagraphofy =jf(x)j+1



(b) Note that we can cancel the (x  4) factor in the numerator and denominator of g(x), so
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which shows that X = 4 is a removable discontinuity for g(x).
Also, x = 3 is an infinite discontinuity (or a vertical asymptote) for g(x) because
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By a similar argument, lim_ g(x) = 2.
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5. (10 points) Consider the function

C
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Find the value of b such that Iimf(x) exists. Justify your answer by calculating appropriate limits.
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Solution: Note that
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So we need
3= I:T bcos( X) =bcos( )= b
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for Ii;n1 T(x) to exist. Hence, choosing b = 3 guarantees that the two-sided limit of £(x) at exists, in which case
X5
it equals 3.
6. (10 points) Show that the equation X 2 = sin x cos X has at least one real solution. Indicate the interval where a
solution can be found.

Solution: Let f(xX) = x 2 sinxcosx. Then the given equation has a solution where f(x) = 0. Note that
T (x) is continuous because sin x cos X is the product of continuous functions, which is continuous, and x 2 is



continuous because it’s a polynomial. Then f(X) is given by the difference of two continuous functions, and hence
is continuous itself.

Also, f(0) = 2 <0,and f( ) = 2 > 0. Since T is continuous everywhere, in particular on [0; 2], the
Intermediate Value Theorem guarantees that (x) = 0 has a solution in the interval (0; 2), and the given equation
does as well.



