.1 **(1956) de la**

	p	
à đượ	$y = 5x^2 - \sin x$.	
Ĭ ∂ E	$\frac{1}{P} \frac{\operatorname{arcsin}(k)}{1-x^2} \mathbf{a}$	
Ç6		
Álim ó	$\int_{1}^{\infty} \ln \frac{x}{x+1} d ignitight$	n = 4
ě li	$\lim_{x \ge 1} 2x \sinh \frac{3}{x}$	
Solution	:	
) A <u>a</u>	$= \frac{10x - \cos x}{2 5x^2 - \sin x}$	
(çavanı)	$u = \arcsin(x).\beta$ $d = \frac{p}{1-x^2}d$	
	$Z = \frac{\arcsin(x)}{\frac{p}{1-x^2}} x = \frac{Z}{1-x^2}$	
	$=\frac{1}{2}u^2 + C$	
	$= \frac{1}{2}(\arcsin(k))^2 + C$	
(cavania	$u = e^{x} \cdot \delta$ $d = e^{x} \cdot d$, textified	$u = e^{ln^{p}\overline{p}u}$

$$\lim_{x \ge 1} 2x \sinh \frac{3}{x} = \lim_{x \ge 1} \frac{2 \sinh \frac{3}{x}}{\frac{1}{x}}$$
$$= {}^{H} \lim_{x \ge 1} \frac{\cosh \frac{3}{x}}{\frac{-6}{x^{2}}}$$
$$= \lim_{x \ge 1} 6 \cosh \frac{3}{x}$$
$$= 6:$$

$$h^{0}(x) = p\frac{1}{\overline{x}} - \frac{1}{4} \cdot \mathbf{\hat{s}} \qquad h^{0}(x) \text{ is the field of } \\ \mathbf{abs} \qquad x = 16, \mathbf{\hat{b}} \qquad x = 16 \text{ is the field of } \\ h^{0}(x) < O \mathbf{\hat{b}} \qquad x > 16, \mathbf{\hat{b}} \qquad h(x) \text{ is the field of } \\ \mathbf{\hat{b}} \qquad r^{0}(x) = 2^{p} \ \overline{\tan(x)} - \frac{1}{4} \tan(x) \quad \sec^{2}(x):$$

406

$$s(x) = \frac{e^{2x}}{3 - e^{2x}}.$$

 $s^{0}(1):$ (44546)

Ì¢aB⊅n ()

b

s(x) 🙀

¢₿₩€

¢**i day**a

s(x): s(x):

s(x). Balayinar

e)

s⁻¹(x):

Solution:

$$s(x) = \frac{e^{2x}}{3 - e^{2x}} \cdot e^{-1}$$

(¢ Hiljina

<u>1</u> 1

(jiiddijiiddiadar

$$\frac{d}{d} = \frac{\cos^2()}{9} \frac{d}{d}$$
$$= \frac{(9=15)^2}{9} \cdot 3$$
$$= \frac{3}{25} \frac{d}{6}$$

:

leksitijettöletett**jaete**h

b∩

COS 886