APPM 1345	Exam 3	Spring 2023
APPM 1345		
Exam 3	Name	
Spring 2023	Instructor Richard McNamara	Section 150

- 1. (23 pts) Parts (a) and (b) are unrelated.
 - (a) Find the inverse function of $g(x) = 6x^5$ 1.

Solution:

$$y = g(x) = 6x^5 \quad 1$$
$$6x^5 = y + 1$$
$$x^5 = y + 1$$

- 2. (27 pts) Parts (a), (b) and (c) are unrelated.
 - (a) Suppose 1=3 of a radioactive substance remains after decaying exponentially for 10 years. Find the half-life of the substance, including the correct unit of measurement. Fully support your answer.

Solution:

Since the substance is undergoing exponential decay, the amount of the substance at time t years can be represented by $y(t) = y_0 e^{kt}$, where $y_0 = y(0)$ is the amount of the substance at time t = 0 and k is the relative rate of change. Therefore, for t = 10, we have the following:

$$y(10) = y_0 e^{10k} = \frac{y_0}{3}$$
) $10k = \ln \frac{1}{3}$) $k =$

- 3. (24 pts) Evaluate the following derivatives using properties of logarithms and/or logarithmic differentiation. Do **not** fully simplify your answers, although they must be expressed as functions of *x*.
 - (a) d

4. (26 pts) Evaluate the following integrals. Fully simplify your answers.

(a)
$$\int_{4}^{2} \varphi \frac{dx}{\overline{x}(1-2)} \varphi \overline{\overline{x}(1-2)}$$

Solution:

Let u = 1 $2^{p}\overline{x} = 1$ $2x^{1=2}$, which implies that $du = x^{1=2} dx = \oint_{\overline{x}}^{dx}$. x = 4) u = 1 $2^{p}\overline{4} = 3$ x = 9) u = 1 $2^{p}\overline{9} = 5$ $Z_{9} = \oint_{\overline{x}(1-2^{p}\overline{x})}^{Z} = Z_{3}^{5} \frac{du}{u} = Z_{5}^{3} \frac{du}{u} = \ln juj$ $\frac{3}{5} = \ln$

Your Initials _____

ADDITIONAL BLANK SPACE If you write a solution here, please clearly indicate the problem number.